ON THE STABILITY FOR PANCYCLICITY

INGO SCHIERMEYER

Fakultät für Mathematik und Informatik
Technische Universität Bergakademie Freiberg
D–09596 Freiberg, Germany

e-mail: schierme@math.tu-freiberg.de

Abstract

A property P defined on all graphs of order n is said to be k-stable if for any graph of order n that does not satisfy P, the fact that uv is not an edge of G and that $G + uv$ satisfies P implies $d_G(u) + d_G(v) < k$. Every property is $(2n - 3)$-stable and every k-stable property is $(k+1)$-stable. We denote by $s(P)$ the smallest integer k such that P is k-stable and call it the stability of P. This number usually depends on n and is at most $2n - 3$. A graph of order n is said to be pancyclic if it contains cycles of all lengths from 3 to n. We show that the stability $s(P)$ for the graph property "G is pancyclic" satisfies

$$\max\left(\left\lceil \frac{4n}{3} \right\rceil - 2, n + t\right) \leq s(P) \leq \max\left(\left\lceil \frac{6n}{5} \right\rceil - 5, n + t\right)$$

where $t = 2\left\lceil \frac{n+1}{2} \right\rceil - (n + 1)$.

Keywords: pancyclic graphs, stability.

2000 Mathematics Subject Classification: 05C35, 05C38, 05C45.

1. Introduction

We use [3] for terminology and notation not defined here and consider simple graphs only. For any integer k, denote by C_k a cycle of length k. A graph of order n is said to be pancyclic if it contains cycles of all lengths from 3 to n.

In [2], Bondy and Chvátal introduced the closure of a graph and the stability of a graph property. The k-closure $C_k(G)$ of a graph G is obtained by recursively joining pairs of non_adjacent vertices whose degree sum is at least k, until no such pair remains.
A property P defined on all graphs of order n is said to be k-stable if for any graph of order n that does not satisfy P, the fact that uv is not an edge of G and that $G + uv$ satisfies P implies $d_G(u) + d_G(v) < k$. Vice versa, if $uv \notin E(G), d_G(u) + d_G(v) \geq k$ and $G + uv$ has property P, then G itself has property P. Every property is $(2n - 3)$-stable and every k-stable property is $(k + 1)$-stable. We denote by $s(P)$ the smallest integer k such that P is k-stable and call it the stability of P. This number usually depends on n and is at most $2n - 3$.

Theorem 1 [2]. The property P: "G contains a cycle C_k" satisfies $s(P) = 2n - k$ for $4 \leq k \leq n$ and $s(P) = 2n - k - 1$ for $4 \leq k < n$ if k is even.

Question 1. What is the stability for the property "G is pancyclic"?

In 1971 Bondy [1] has posed the interesting "metaconjecture".

Conjecture 1 (metaconjecture). Almost any non-trivial condition on a graph which implies that the graph is hamiltonian also implies that the graph is pancyclic (except for maybe a simple family of exceptional graphs).

By Theorem 1, $s(P) = n$ for the property "G is hamiltonian". The complete bipartite graphs $K_{\frac{n}{2}, \frac{n}{2}}$ for n even, $n \geq 4$, and $K_{\frac{n+1}{2}, \frac{n-1}{2}}$ for n odd, $n \geq 5$, show that the stability $s(P)$ for the property "G is pancyclic" satisfies $s(P) \geq n + t$ for all $n \geq 4$, where $t = 2\lceil \frac{n+1}{2} \rceil - (n + 1)$. In [5] the following Theorem was proved.

Theorem 2. Let G be a hamiltonian graph of order $n \geq 32$ and u and v two nonadjacent vertices with $d(u) + d(v) \geq n + t$, where $t = 2\lceil \frac{n+1}{2} \rceil - (n + 1)$. Then G contains all cycles of length k where $3 \leq k \leq \frac{n+13}{5}$.

Moreover, examples were presented showing one cannot expect G to contain cycles of length considerably longer than $\frac{n}{3}$ with the assumption of Theorem 2.

For the property P: "G is pancyclic" we will prove the following Theorem.

Theorem 3. Let P be the property "G is pancyclic". Then the stability $s(P)$ satisfies $\max(\lfloor \frac{4n}{5} \rfloor - 5, n + t) \leq s(P) \leq \max(\lfloor \frac{4n}{5} \rfloor - 2, n + t)$, where $t = 2\lceil \frac{n+1}{2} \rceil - (n + 1)$.

2. Exact Values and the Lower Bound

For a graph \(G \) of order \(n \) denote by \(s(P, n) \) the stability of the property "\(G \) is pancyclic". Then it is not very difficult to check that \(s(P, n) = n + t \) for \(3 \leq n \leq 9 \), where \(t = 2\left\lceil \frac{n+1}{2} \right\rceil - (n+1) \).

Next we will give a proof for the lower bound given in Theorem 3.

Proof. As mentioned in the introduction the complete bipartite graphs \(K_{\frac{n}{2}, \frac{n}{2}} \) for \(n \) even, \(n \geq 4 \), and \(K_{\frac{n+1}{2}, \frac{n+1}{2}} \) for \(n \) odd, \(n \geq 5 \), show that \(s(P, n) \geq n + t \) for all \(n \geq 4 \), where \(t = 2\left\lceil \frac{n+1}{2} \right\rceil - (n+1) \).

1. For \(k \geq 1 \) let \(G_{5k} \) be the graph of order \(n = 5k \) with vertex set \(V(G) = \{v_1, \ldots, v_n\} \) and a Hamilton cycle \(C : v_1 \ldots v_nv_1 \). Define \(u = v_1, v = v_{k+1}, a = v_{2k+1}, b = v_{2k+2}, c = v_{4k+2}, d = v_{4k+3} \). Let \(Q = \{v_2, \ldots, v_k\}, R = \{v_{k+2}, \ldots, v_{2k+2}\}, S = \{v_{2k+3}, \ldots, v_{4k+1}\} \) and \(P = \{v_{4k+2}, \ldots, v_{5k}\} \). Define \(N(u) = Q \cup P \cup R - \{a, b\}, N(v) = Q \cup P \cup R - \{c, d\} \). Then \(d(u) + d(v) = 6k - 6 = n + \frac{n-30}{5} \) and the graph \(G + uv \) is pancyclic whereas \(G \) misses a cycle of length \(2k + 3 \).

2. For \(k \geq 1 \) let \(G_{5k+1} \) be the graph of order \(n = 5k + 1 \) with vertex set \(V(G) = \{v_1, \ldots, v_n\} \) and a Hamilton cycle \(C : v_1 \ldots v_nv_1 \). Define \(u = v_1, v = v_{k+1}, a = v_{2k+1}, b = v_{2k+2}, c = v_{4k+2}, d = v_{4k+3} \). Let \(Q = \{v_2, \ldots, v_k\}, R = \{v_{k+2}, \ldots, v_{2k+2}\}, S = \{v_{2k+3}, \ldots, v_{4k+1}\} \) and \(P = \{v_{4k+2}, \ldots, v_{5k+1}\} \). Define \(N(u) = Q \cup P \cup R - \{a, b\}, N(v) = Q \cup P \cup R - \{c, d\} \). Then \(d(u) + d(v) = 6k - 4 = n + \frac{n-26}{5} \) and the graph \(G + uv \) is pancyclic whereas \(G \) misses a cycle of length \(2k + 3 \).

3. For \(k \geq 1 \) let \(G_{5k+2} \) be the graph of order \(n = 5k + 2 \) with vertex set \(V(G) = \{v_1, \ldots, v_n\} \) and a Hamilton cycle \(C : v_1 \ldots v_nv_1 \). Define \(u = v_1, v = v_{k+1}, a = v_{2k+1}, b = v_{2k+2}, c = v_{4k+2}, d = v_{4k+3} \). Let \(Q = \{v_2, \ldots, v_k\}, R = \{v_{k+2}, \ldots, v_{2k+2}\}, S = \{v_{2k+3}, \ldots, v_{4k+1}\} \) and \(P = \{v_{4k+2}, \ldots, v_{5k+2}\} \). Define \(N(u) = Q \cup P \cup R - \{a, b\}, N(v) = Q \cup P \cup R - \{c, d\} \). Then \(d(u) + d(v) = 6k - 2 = n + \frac{n-22}{5} \) and the graph \(G + uv \) is pancyclic whereas \(G \) misses a cycle of length \(2k + 3 \).

4. For \(k \geq 1 \) let \(G_{5k+3} \) be the graph of order \(n = 5k + 3 \) with vertex set \(V(G) = \{v_1, \ldots, v_n\} \) and a Hamilton cycle \(C : v_1 \ldots v_nv_1 \). Define \(u = v_1, v = v_{k+4}, a = v_{2k+4}, b = v_{2k+5}, c = v_{4k+4}, d = v_{4k+5} \). Let \(Q = \{v_2, \ldots, v_{k+1}\}, R = \{v_{k+3}, \ldots, v_{2k+3}\}, S = \{v_{2k+4}, \ldots, v_{4k+3}\} \) and \(P = \{v_{4k+4}, \ldots, v_{5k+3}\} \). Define \(N(u) = Q \cup P \cup R - \{a, b\}, N(v) = Q \cup P \cup R - \{c, d\} \).
Lemma 1. Then \(d(u) + d(v) = 6k - 2 = n + \frac{28}{5} \) and the graph \(G + uv \) is pancyclic whereas \(G \) misses a cycle of length \(2k + 4 \).

5. For \(k \geq 0 \) let \(G_{5k+4} \) be the graph of order \(n = 5k + 4 \) with vertex set \(V(G) = \{v_1, \ldots, v_n\} \) and a Hamilton cycle \(C : v_1 \ldots v_n v_1 \). Define \(u = v_1, v = v_{k+2}, a = v_{2k+2}, b = v_{2k+3}, c = v_{4k+4}, d = v_{4k+5} \). Let \(Q = \{v_2, \ldots, v_{k+1}\}, R = \{v_{k+3}, \ldots, v_{2k+3}\}, S = \{v_{2k+4}, \ldots, v_{4k+3}\} \) and \(P = \{v_{4k+4}, \ldots, v_{5k+4}\} \). Define \(N(u) = Q \cup P \cup R - \{a, b\}, N(v) = Q \cup P \cup R - \{c, d\} \). Then \(d(u) + d(v) = 6k = n + \frac{24}{5} \) and the graph \(G + uv \) is pancyclic whereas \(G \) misses a cycle of length \(2k + 4 \).

Summarizing we obtain that \(s(P) \geq \max([\frac{5n}{6}] - 5, n+t) \), where \(t = 2[\frac{n+1}{2}] - (n+1) \).

3. The Upper Bound

In this section we will give a proof for the upper bound given in Theorem 3. For this proof we will use the following results.

Corollary 1 [4]. Let \(G \) be a Hamiltonian graph of order \(n \). If there exist two nonadjacent vertices \(u \) and \(v \) at distance \(d \geq 3 \) on a Hamiltonian cycle of \(G \) such that \(d(u) + d(v) \leq n + d - 2 \), then \(G \) contains cycles of all lengths between \(3 \) and \(n - d + 1 \).

Lemma 1 [4]. Let \(G \) contain a Hamiltonian path \(P = v_1v_2 \ldots v_n \) such that \(v_1v_n \notin E(G) \) and \(d(v_1) + d(v_n) \geq n + d \) for some integer \(d, 0 \leq d \leq n - 4 \). Then for any \(l, 2 \leq l \leq d + 3 \), there exists a \((v_1, v_n)\)-path of length \(l \).

Theorem 4 [4]. Let \(G \) be a graph of order \(n \). If \(G \) has a Hamiltonian \((u, v)\)-path for a pair of nonadjacent vertices \(u \) and \(v \) such that \(d(u) + d(v) \geq n \), then \(G \) is pancyclic.

Proof of Theorem 3. Suppose there is a graph \(G \) with nonadjacent vertices \(u, v \) such that \(d(u) + d(v) \geq \max([\frac{4n}{5}] - 2, n+t) \), \(G + uv \) is pancyclic, but \(G \) is not. Then \(n \geq 10 \). By Theorem 1, \(G \) is Hamiltonian. Let \(C : v_1 \ldots v_nv_1 \) be a Hamilton cycle in \(G \). Choose the labeling such that \(u = v_1, v = v_{r+2} \) with \(n = r + s + 2 \) and \(r \leq s \). Let \(R = \{v_2, \ldots, v_{r+1}\}, S = \{v_{r+3}, \ldots, v_n\} \) and \(d = d_C(u, v) = r+1 \). Set \(d(u) + d(v) = r + p + s + q \), where \(d_R(u) + d_R(v) = r + p \) and \(d_S(u) + d_S(v) = s + q \). Recall that \(d(u) + d(v) \geq \lceil \frac{4n}{3} \rceil - 2 \). By Theorem 1, \(G \) contains cycles \(C_k \) for \(\lceil \frac{2}{3}n \rceil + 2 \leq k \leq n \).
We distinguish several cases.

Case 1. \(d \leq \left[\frac{n}{3} \right] \).

Since \(n \geq 227 \) we have \(d(u) + d(v) \geq n + 2 \). Thus \(d_S(u) + d_S(v) \geq s + 2 \) for \(2 \leq d \leq 3 \). By Theorem 4, \(G \) contains cycles \(C_3, \ldots, C_{s+2} \). Hence \(G \) is pancyclic for \(d = 2 \), a contradiction.

So we may assume that \(d \geq 3 \). By Corollary 1, \(G \) contains cycles \(C_3, \ldots, C_{n-d+1} \). Hence \(G \) is pancyclic since \(n - d + 1 \geq \left[\frac{2n}{3} \right] + 1 \), a contradiction.

Case 2. \(d \geq \left[\frac{n}{3} \right] + 1 \).

Subcase 2.1. \(d_S(u) + d_S(v) \geq s + 2 \).

By Theorem 4, \(G \) contains cycles \(C_3, \ldots, C_{s+2} \). Note that \(s + 2 \geq \frac{n}{2} + 1 \).

Subcase 2.1.1. \(p \geq \left[\frac{2n}{3} \right] - s \).

By Lemma 1 we can take \((u,v)\)-paths of length \(l \) in \(R \cup \{ u, v \} \) for \(2 \leq l \leq p + 1 \) and a \((v,u)\)-path of length \(s + 1 \) in \(S \cup \{ u, v \} \). This gives cycles \(C_{s+3}, \ldots, C_{s+p+2} \). Hence \(G \) is pancyclic since \(s + p + 2 \geq \left[\frac{2n}{3} \right] + 2 \), a contradiction.

Subcase 2.1.2. \(p \leq \left[\frac{2}{3} n \right] - s - 1 \).

Then \(q \geq \left[\frac{2}{3} \right] - 2 - 2 - p \geq \left[\frac{2}{3} \right] - \left[\frac{2n}{3} \right] + s + 1 \geq s + 1 - \left[\frac{n}{3} \right] \geq 2 \) for \(n \geq 11 \). Take \((v,u)\)-paths of length \(l \) for \(2 \leq l \leq s - \left[\frac{n}{3} \right] + 2 \) in \(S \cup \{ u, v \} \). This gives cycles \(C_{n-s+1+2}, \ldots, C_{\left[\frac{2n}{3} \right]+1} \). Hence \(G \) is pancyclic, a contradiction. It is easy to check that for \(n = 10 \) and \(s = 4 \) \(G \) is also pancyclic and we get a contradiction.

Subcase 2.2. \(d_S(u) + d_S(v) \leq s + 1 \).

Then \(d_R(u) + d_R(v) \geq r + 1 + \left[\frac{n}{3} \right] - 2 \). By Theorem 4, \(G \) contains cycles \(C_3, \ldots, C_{r+2} \). Set \(r + 2 = \left[\frac{n}{3} \right] + 1 + d' \). By Lemma 1 there are \((u,v)\)-paths of lengths \(l \) for \(2 \leq l \leq \left[\frac{n}{3} \right] \) in \(R \cup \{ u, v \} \). This gives cycles \(C_{s+1+2}, \ldots, C_{s+1+\left[\frac{3}{2} \right]} \). So far cycles of lengths \(\left[\frac{n}{3} \right] + d' + 2, \ldots, \left[\frac{2n}{3} \right] - d' + 1 \) are missing.

Let \(S = S_1 \cup S_2 \cup S_3 \) with \(S_1 = \{ v_1, \ldots, v_{n-\left[\frac{n}{3} \right]} \}, S_2 = \{ v_{\left[\frac{n}{3} \right]+1}, \ldots, v_{2\left[\frac{n}{3} \right]+d'+1} \} \) and \(S_3 = \{ v_{2\left[\frac{n}{3} \right]+d'+2}, \ldots, v_n \} \). Then \(|S_1| = n - 2 \left[\frac{n}{3} \right] - d' - 1 = |S_2| \) and \(|S_2| = d' + 1 + 3 \left[\frac{n}{3} \right] - n \).

Suppose \(uv_i \in E(G) \) for some \(i \) with \(\left[\frac{n}{3} \right] + 2 + d' \leq i \leq n \). Then there is a path \(uv_i v_{i-1} \ldots v \) of length \(i - \left(\left[\frac{n}{3} \right] + d' + 1 \right) + 1 \). Together with the \((u,v)\)-paths in \(R \cup \{ u, v \} \) we obtain cycles of lengths \(i - \left[\frac{n}{3} \right] - d' + 2, \ldots, i - d' \). Hence, for \(n - \left[\frac{n}{3} \right] + 1 \leq i \leq n - \left[\frac{n}{3} \right] + 2d' \), we obtain all missing cycles and \(G \) is pancyclic, a contradiction.
A symmetric argument applies for edges vv_i with $\lceil \frac{n}{3} \rceil + 2 + d' \leq i \leq n$. In this case, for $n - \lceil \frac{n}{3} \rceil - d' + 2 \leq i \leq 2\lceil \frac{n}{3} \rceil + d' + 1$, we obtain all missing cycles and G is pancyclic, a contradiction.

Hence we may assume that $N_{S_2}(u) = N_{S_2}(v) = \emptyset$. Suppose $N_S(u) \cap N_S(v) = \emptyset$. Then $(d_R(u) + d_R(v)) + (d_S(u) + d_S(v)) \leq 2(\lceil \frac{n}{3} \rceil + d' - 1) + 2(n - 2\lceil \frac{n}{3} \rceil - d' - 1) = 2n - 2\lceil \frac{n}{3} \rceil - 4 \leq n + \lceil \frac{n}{3} \rceil - 4 < \lceil \frac{4n}{3} \rceil - 2$, a contradiction. Hence $N_S(u) \cap N_S(v) \neq \emptyset$. Thus there is a cycle of length $\lceil \frac{n}{3} \rceil + d' + 2$.

Next consider two vertices $x \in S_1, y \in S_3$ with $d_C(x, y) = \lceil \frac{n}{3} \rceil$. If $|E(\{x, y\}, \{u, v\})| \geq 3$ then there is a (u, v)-path of length $\lceil \frac{n}{3} \rceil + 2$. Together with the (u, v)-paths through R we obtain cycles of lengths $\lceil \frac{n}{3} \rceil + 4, \ldots, 2\lceil \frac{n}{3} \rceil + 2$ and G is pancyclic (recall that $d' \geq 1$).

Hence we may further assume that $|E(\{x, y\}, \{u, v\})| \leq 2$ for all pairs of vertices $x \in S_1, y \in S_3$ with $d_C(x, y) = \lceil \frac{n}{3} \rceil$. But then $\lfloor \frac{4n}{3} \rfloor - 2 \leq (d_R(u) + d_R(v)) + (d_S(u) + d_S(v)) \leq 2(\lceil \frac{n}{3} \rceil + d' - 1) + 2(n - 2\lceil \frac{n}{3} \rceil - d' - 1) = 2n - 2\lceil \frac{n}{3} \rceil - 4 \leq n + \lceil \frac{n}{3} \rceil - 4 < \lceil \frac{4n}{3} \rceil - 2$, a final contradiction. \hfill \blacksquare

Acknowledgement

I thank Akira Saito very much for a stimulating discussion on this topic and some valuable comments. I also thank the referee for his valuable suggestions.

References

Received 15 November 2000
Revised 2 April 2001