MODIFICATIONS OF CSÁKÁNY’S THEOREM

IVAN CHAJDA

Department of Algebra and Geometry, Palacký University of Olomouc
Tomkova 40, Cz-779 00 Olomouc, Czech Republic

e-mail: chajda@risc.upol.cz

Abstract

Varieties whose algebras have no idempotent element were characterized by B. Csákány by the property that no proper subalgebra of an algebra of such a variety is a congruence class. We simplify this result for permutable varieties and we give a local version of the theorem for varieties with nullary operations.

Keywords: congruence class, idempotent element, permutable variety, Mal’cev condition.

1991 Mathematics Subject Classification: 8B05, 08A30.

1 Introduction

B. Csákány [2] proved the following statement:

Proposition. For a variety \(\mathcal{V} \), the following conditions are equivalent:

(i) None of algebras in \(\mathcal{V} \) having at least two elements have idempotent elements;

(ii) No algebra \(A \in \mathcal{V} \) has a proper subalgebra whose carrier is a class of some \(\theta \in \text{Con } A \);

(iii) There exist \(n \in \mathbb{N} \), ternary terms \(p_1, \ldots, p_n \), and unary terms \(f_1, \ldots, f_n, g_1, \ldots, g_n \) such that the identities

\[
\begin{align*}
 x &= p(f_1(x), x, y), \\
 p_i(g_i(x), x, y) &= p_{i+1}(f_{i+1}(x), x, y), \quad \text{for } i = 1, \ldots, n - 1, \\
 y &= p_n(g_n(x), x, y)
\end{align*}
\]

hold in \(\mathcal{V} \).
It was recognized by J. Kollár [3] that each of the equivalent conditions of
the Proposition is equivalent to

(iv) For all $A \in \mathcal{V}$, the greatest congruence ι_A on A is a compact element
of $\text{Con } A$.

Analyzing the proof of Proposition, we find out that these conditions
are also equivalent to

(v) $\theta(F_{\mathcal{V}}(x) \times F_{\mathcal{V}}(x)) = F_{\mathcal{V}}(x, y) \times F_{\mathcal{V}}(x, y)$ in $\text{Con } F_{\mathcal{V}}(x, y)$, where $F_{\mathcal{V}}(x_1, \ldots, x_n)$ denotes the free algebra of \mathcal{V} generated by the set
$\{x_1, \ldots, x_n\}$ of free generators, and $\theta(M \times M)$ denotes the least congruence
containing the set $M \times M$.

From this point of view, (v) can be modified by several ways. We can
consider a variety \mathcal{V} with constants (i.e. nullary operations) and we can
omit a free variable on the left-hand side of (v) to obtain

(vi) $\theta(F_{\mathcal{V}}(\emptyset) \times F_{\mathcal{V}}(\emptyset)) = F_{\mathcal{V}}(x) \times F_{\mathcal{V}}(x)$ in $\text{Con } F_{\mathcal{V}}(x)$.

This condition used in [1] it is equivalent to the property that ι_A is generated
by the set of nullary operations for each $A \in \mathcal{V}$.

Further, we can also

(a) simplify Csákány’s original result for permutable varieties;

(b) omit one free variable in both sides of (v) to obtain

(vii) $\theta(F_{\mathcal{V}}(\emptyset) \times F_{\mathcal{V}}(\emptyset)) = F_{\mathcal{V}}(x) \times F_{\mathcal{V}}(x)$ in $\text{Con } F_{\mathcal{V}}(x)$.

In the second case we obtain a local version of Csákány’s theorem. These
modifications are treated in this paper.

2 Results

Theorem 1. Let \mathcal{V} be a permutable variety. The following conditions are
equivalent:

(i) None of algebras in \mathcal{V} having at least two elements have idempotent
elements;

(ii) No algebra $A \in \mathcal{V}$ has a proper subalgebra whose carrier is a class
of some $\theta \in \text{Con } A$;

(iii) There exist $n \in \mathbb{N}$ and a $(2 + n)$-ary term p and unary terms
$v_1, \ldots, v_n, w_1, \ldots, w_n$ such that the identities

$$x = p(x, y, v_1(x), \ldots, v_n(x)),$$

$$\theta(F_{\mathcal{V}}(x) \times F_{\mathcal{V}}(x)) = F_{\mathcal{V}}(x, y) \times F_{\mathcal{V}}(x, y)$$

in $\text{Con } F_{\mathcal{V}}(x, y)$, where $F_{\mathcal{V}}(x_1, \ldots, x_n)$ denotes the free algebra of \mathcal{V} generated by the set
$\{x_1, \ldots, x_n\}$ of free generators, and $\theta(M \times M)$ denotes the least congruence
containing the set $M \times M$.

From this point of view, (v) can be modified by several ways. We can
consider a variety \mathcal{V} with constants (i.e. nullary operations) and we can
omit a free variable on the left-hand side of (v) to obtain

(vi) $\theta(F_{\mathcal{V}}(\emptyset) \times F_{\mathcal{V}}(\emptyset)) = F_{\mathcal{V}}(x) \times F_{\mathcal{V}}(x)$ in $\text{Con } F_{\mathcal{V}}(x)$.

This condition used in [1] it is equivalent to the property that ι_A is generated
by the set of nullary operations for each $A \in \mathcal{V}$.

Further, we can also

(a) simplify Csákány’s original result for permutable varieties;

(b) omit one free variable in both sides of (v) to obtain

(vii) $\theta(F_{\mathcal{V}}(\emptyset) \times F_{\mathcal{V}}(\emptyset)) = F_{\mathcal{V}}(x) \times F_{\mathcal{V}}(x)$ in $\text{Con } F_{\mathcal{V}}(x)$.

In the second case we obtain a local version of Csákány’s theorem. These
modifications are treated in this paper.

2 Results

Theorem 1. Let \mathcal{V} be a permutable variety. The following conditions are
equivalent:

(i) None of algebras in \mathcal{V} having at least two elements have idempotent
elements;

(ii) No algebra $A \in \mathcal{V}$ has a proper subalgebra whose carrier is a class
of some $\theta \in \text{Con } A$;

(iii) There exist $n \in \mathbb{N}$ and a $(2 + n)$-ary term p and unary terms
$v_1, \ldots, v_n, w_1, \ldots, w_n$ such that the identities

$$x = p(x, y, v_1(x), \ldots, v_n(x)),$$
\[y = p(x, y, w_1(x), \ldots, w_n(x)) \]

hold in \(V \).

Proof. The equivalence of (i) and (ii) is proven by the Proposition. Prove (ii)\(\Rightarrow\)(iii): Set \(A = F_V(x, y) \) and \(B = F_V(x) \). Let \(\theta = \theta(B \times B) \in \text{Con } A \) (where \(B \) is the carrier of \(B \)). Since \(B \) is a subalgebra of \(A \), we have \(\theta(B \times B) = \theta = \iota_A \) by (ii). However, \(V \) is permutable; thus \(\theta(B \times B) = R(B \times B) \), the least reflexive and compatible relation on \(A \) containing the set \(B \times B \). It follows \(\iota_A = R(B \times B) \) which yields \(\langle x, y \rangle \in R(B \times B) \). Hence, there exists a \((2 + n)\)-ary term \(p \) and elements \(b_1, \ldots, b_n, b'_1, \ldots, b'_n \in B \) such that \(x = p(x, y, b_1, \ldots, b_n) \) and \(y = p(x, y, b'_1, \ldots, b'_n) \).

Since \(b_i, b'_i \in F_V(x) \), there are unary terms \(v_i, w_i \) with \(b_i = v_i(x) \) and \(b'_i = w_i(x) \), \(i = 1, \ldots, n \).

For (iii)\(\Rightarrow\)(i) let \(A \in V \) with \(|A| > 1 \) and suppose that \(a \in A \) is an idempotent element. Let \(b \in A \setminus \{a\} \). Then \(v_i(a) = a = w_i(a) \) and, by (iii), \(a = p(a, b, v_i(a), \ldots, v_n(a)) = p(a, b, a, \ldots, a) = p(a, b, w_1(a), \ldots, w_n(a)) = b \), a contradiction. \(\blacksquare \)

Example 1. For a variety \(\mathcal{R} \) of rings with 1, we can set \(n = 2, v_1(x) = 1 = w_2(x), v_2(x) = 0 = w_1(x) \) and \(p(x, y, a, b) = ax + by \). Hence, it follows that the reduct of a ring with 1, determined by the terms 0, 1, \(x - y + z \), and \(xy \), generates a permutable variety with no idempotent elements.

In this section we consider only varieties \(V \) having a nullary operation which will be denoted by 0; it is usually called a constant. For \(A \in V \), this constant will be denoted by \(0_A \). We do not restrict the number of nullary operations of \(V \) but this 0 will be considered to be fixed.

Theorem 2. Let \(V \) be a variety with 0. The following conditions are equivalent:

(i) No \(A \in V \) having at least two elements has \(0_A \) as an idempotent element;

(ii) For each \(A \in V \) and each \(\theta \in \text{Con } A \), \([0_A]_{\theta}\) is not a proper subalgebra of \(A \);

(iii) There exist \(n \in \mathbb{N} \), binary terms \(q_1, \ldots, q_n \), and unary terms \(v_1, \ldots, v_n, w_1, \ldots, w_n \) such that the identities

\[x = q_1(x, v_1(0)), \]
\[q_1(x, w_i(0)) = q_{i+1}(x, v_{i+1}(0)), \quad i = 1, \ldots, n - 1, \]

\[0 = q_n(x, w_n(0)) \]

hold in \(\mathcal{V} \).

Proof. (i)⇒(ii): Let \(\mathcal{A} \in \mathcal{V}, A > 1, \, \theta \in \text{Con} \, \mathcal{A} \) and suppose \([0_A]_\theta \neq A\). Then \(\mathcal{A}/\theta \) has at least two elements, and, of course, \([0_A]_\theta = [0_A]_\theta\). Since \([0_A]_\theta \) is not an idempotent of \(\mathcal{A}/\theta \), \([0_A]_\theta \) cannot be a subalgebra of \(\mathcal{A} \).

(ii)⇒(iii): Set \(\mathcal{A} = \mathcal{F}_\mathcal{V}(x) \) and \(B = \mathcal{F}_\mathcal{V}(\emptyset) \). Let \(\theta = \theta(B \times B) \) in \(\text{Con} \, \mathcal{A} \). Since \(0_A = 0_B \in B \), the class \([0_A]_\theta \) contains \(B \). Hence, for every \(n \)-ary operation \(f \) of the type of \(\mathcal{V} \), for every \(c_1, \ldots, c_n \in [0_A]_\theta \) and every \(b_1, \ldots, b_n \in B \) we have \(\langle c_i, b_i \rangle \in \theta \quad (i = 1, \ldots, n) \); thus, also \(\langle f(c_1, \ldots, c_n), f(b_1, \ldots, b_n) \rangle \in \theta \). But \(f(b_1, \ldots, b_n) \in B \subseteq [0_A]_\theta \), whence \(f(c_1, \ldots, c_n) \in [0_A]_\theta \). Thus, \([0_A]_\theta \) is a subalgebra of \(\mathcal{A} \). In account of (ii), \([0_A]_\theta = A\); thus, \((x, 0) \in \theta(B \times B) \). Hence, there exist \(d_0, d_1, \ldots, d_n \in A \) such that \(d_0 = x \), \(d_n = 0 \) and \(\langle d_{i-1}, d_i \rangle = \langle \varphi_i(b_i), \varphi_i(b'_i) \rangle \quad (i = 1, \ldots, n) \) for some \(b_i, b'_i \in B \) and unary polynomials \(\varphi_i \) over \(\mathcal{A} \). Thus \(b_i = v_i(0), b'_i = w_i(0) \) for some unary terms \(v_i, w_i \). Of course, \(\varphi_i(z) = q_i(x, z) \) for some binary terms \(q_1, \ldots, q_n \). The condition (iii) is evident.

(iii)⇒(i): Let \(\mathcal{A} \in \mathcal{V}, A > 1, \ 0_A \neq a \in A \). Suppose that \(0_A \) is an idempotent of \(\mathcal{A} \). Then \(v_i(0_A) = 0_A = w_i(0_A) \) and

\[a = q_1(a, v_1(0_A)) = q_1(a, 0_A) = q_1(a, w_1(0_A)) = q_2(a, v_2(0_A)) = q_2(a, 0_A) = q_2(a, w_2(0_A)) = \cdots = 0_A, \]

a contradiction. \(\Box \)

Example 2. For a variety \(\mathcal{P} \) of pseudocomplemented semilattices, we set \(n = 1, \ v_1(x) = x^* \), \(w_1(x) = x \) and \(q_1(x, y) = x \land y \). Then

\[q_1(x, v_1(0)) = x \land 0^* = x, \]

\[q_1(x, w_1(0)) = x \land 0 = 0. \]

Analogously as previously, we can simplify Theorem 2 for permutable varieties.

Theorem 3. Let \(\mathcal{V} \) be a permutable variety with \(0 \). The following conditions are equivalent:

(i) No \(\mathcal{A} \in \mathcal{V} \) consisting of at least two elements has \(0_A \) as an idempotent element;
(ii) For each $A \in \mathcal{V}$ and each $\theta \in \text{Con } \mathcal{A}$, $[0_A]_\theta$ is not a proper subalgebra of A;

(iii) There exist $n \in \mathbb{N}$ and a $(1 + n)$-ary term q and unary terms $v_1, \ldots, v_n, w_1, \ldots, w_n$ such that the identities

$$x = q(x, v_1(0), \ldots, v_n(0)),$$

$$0 = q(x, w_1(0), \ldots, w_n(0))$$

hold in \mathcal{V}.

Example 3. For the variety of Boolean algebras, we can set $n = 1$, $v_1(x) = x'$, $w_1(x) = x$ and $q(x, y) = x \land y$. Then $q(x, v_1(0)) = x \land 0' = x$, and $q(x, w_1(0)) = x \land 0 = 0$.

Acknowledgement

I wish to thank the referee for several comments which enable to improve the preliminary version of this paper.

References

