HAMILTONIAN CYCLE PROBLEM IN STRONG k-QUASI-TRANSITIVE DIGRAPHS WITH LARGE DIAMETER

RUIXIA WANG

School of Mathematical Sciences
Shanxi University
Taiyuan, Shanxi, 030006, P.R. China
e-mail: wangrx@sxu.edu.cn

Abstract

Let k be an integer with $k \geq 2$. A digraph is k-quasi-transitive, if for any path $x_0x_1 \ldots x_k$ of length k, x_0 and x_k are adjacent. Let D be a strong k-quasi-transitive digraph with even $k \geq 4$ and diameter at least $k + 2$. It has been shown that D has a Hamiltonian path. However, the Hamiltonian cycle problem in D is still open. In this paper, we shall show that D may contain no Hamiltonian cycle with $k \geq 6$ and give the sufficient condition for D to be Hamiltonian.

Keywords: quasi-transitive digraph, k-quasi-transitive digraph, Hamiltonian cycle.

2010 Mathematics Subject Classification: 05C20.

1. Terminology and Introduction

We shall assume that the reader is familiar with the standard terminology on digraphs and refer the reader to [1] for terminology not defined here. We only consider finite digraphs without loops or multiple arcs. Let D be a digraph with vertex set $V(D)$ and arc set $A(D)$. For any $x, y \in V(D)$, we will write $x \rightarrow y$ if $xy \in A(D)$, and also, we will write $y \rightarrow x$ if $x \rightarrow y$ or $y \rightarrow x$. For disjoint subsets X and Y of $V(D)$, $X \rightarrow Y$ means that every vertex of X dominates every vertex of Y, $X \Rightarrow Y$ means that there is no arc from Y to X and $X \rightarrow Y$ means that both of $X \rightarrow Y$ and $X \Rightarrow Y$ hold. For subsets X, Y of $V(D)$, we define $(X, Y) = \{xy \in A(D) : x \in X, y \in Y\}$. If $X = \{x\}$, then we write (x, Y) instead of $(\{x\}, Y)$. Likewise, if $Y = \{y\}$, then we write (X, y) instead of $(X, \{y\})$. Let
D' be a subdigraph of D and $x \in V(D) \setminus V(D')$. We say that x and D' are adjacent if x and some vertex of D' are adjacent. For $S \subseteq V(D)$, we denote by $D[S]$ the subdigraph of D induced by the vertex set S.

Let x and y be two vertices of $V(D)$. The distance from x to y in D, denoted $d(x, y)$, is the minimum length of an (x, y)-path, if y is reachable from x, and otherwise $d(x, y) = \infty$. The distance from a set X to a set Y of vertices in D is $d(X, Y) = \max\{d(x, y) : x \in X, y \in Y\}$. The diameter of D is $\text{diam}(D) = d(V(D), V(D))$. Clearly, D has finite diameter if and only if it is strong.

Let $P = v_1v_2\cdots v_n$ be a path or a cycle of D. For $i \neq j$, $v_i, v_j \in V(P)$ we denote by $P[v_i, v_j]$ the subpath of P from v_i to v_j. Let $Q = u_1u_2\cdots u_q$ be a vertex-disjoint path or cycle with P in D. If there exist $v_i \in V(P)$ and $u_j \in V(Q)$ such that $v_iu_j \in A(D)$, then we will use $P[v_i, v_j]Q[u_j, u_q]$ to denote the path $v_1v_2\cdots v_iu_ju_{j+1}\cdots u_q$.

A digraph is quasi-transitive, if for any path $x_0x_1x_2$ of length 2, x_0 and x_2 are adjacent. The concept of k-quasi-transitive digraphs was introduced in [2] as a generalization of quasi-transitive digraphs. A digraph is k-quasi-transitive, if for any path $x_0x_1\cdots x_k$ of length k, x_0 and x_k are adjacent. The k-quasi-transitive digraphs have been studied in [2–7].

In [7], Wang and Zhang showed that a strong k-quasi-transitive digraph D with even $k \geq 4$ and $\text{diam}(D) \geq k + 2$ has a Hamiltonian path and proposed the following problem. Let k be an even integer with $k \geq 4$. Is it true that every strong k-quasi-transitive digraph with diameter at least $k + 2$ is Hamiltonian?

In this paper, we shall show that D may contain no Hamiltonian cycle with $k \geq 6$ and give the sufficient condition for it to be Hamiltonian.

2. Main Results

For the rest of this paper, let k be an even integer with $k \geq 4$ and D denote a strong k-quasi-transitive digraph with $\text{diam}(D) \geq k + 2$. There exist two vertices u, v such that $d(u, v) = k + 2$ in D. Let $P = x_0x_1\cdots x_{k+2}$ denote a shortest (u, v)-path in D, where $u = x_0$ and $v = x_{k+2}$.

Theorem 1 [7]. The subdigraph induced by $V(P)$ is a semicomplete digraph and $x_j \to x_i$ for $1 \leq i + 1 < j \leq k + 2$.

Lemma 2 [5]. Let k be an integer with $k \geq 2$ and D be a strong k-quasi-transitive digraph. Suppose that $C = x_0x_1\cdots x_{n-1}x_0$ is a cycle of length n with $n \geq k$ in D. Then for any $x \in V(D) \setminus V(C)$, x and C are adjacent.

By Theorem 1, $x_{k+2} \to x_0$. So $x_0x_1\cdots x_{k+2}x_0$ is a cycle of length $k + 3$. By Lemma 2, every vertex of $V(D) \setminus V(P)$ is adjacent to P. Hence we can divide
Let Q be a digraph, then, for any x in Q, we can check that the result is true. Suppose x is adjacent to every vertex of Q. Hence, for the rest of this paper, we consider the case $x = 4$.

By Theorems 1 and 3 and Lemmas 4 and 5, a strong 4-quasi-transitive digraph D with $\text{diam}(D) \geq 6$ is in fact a semicomplete digraph. It is well known that a strong semicomplete digraph is Hamiltonian. Hence, for the rest of this paper, we consider the case $k \geq 6$.

Lemma 6. Let H be a digraph and $u, v \in V(H)$ such that $d(u, v) = n$ with $n \geq 4$. Let $Q = x_0x_1 \cdots x_n$ be a shortest (u, v)-path in H. If $H[V(Q)]$ is a semicomplete digraph, then, for any $x_i, x_j \in V(Q)$ with $0 \leq i < j \leq n$, there exists a path of length p from x_j to x_i with $p \in \{2, 3, \ldots, n - 1\}$ in $H[V(Q)]$.

Proof. We prove the result by induction on n. For $n = 4$, it is not difficult to check that the result is true. Suppose $n \geq 5$. Assume $j - i = n$. It must be $j = n$ and $i = 0$. Then the length of the path $x_nP[x_2, x_p]x_0$ is p with $p \in \{2, 3, \ldots, n - 1\}$. Now assume $1 \leq j - i \leq n - 1$. Then $x_i, x_j \in \{x_0, x_1, \ldots, x_{n-1}\}$ or $x_i, x_j \in \{x_1, x_2, \ldots, x_n\}$. Without loss of generality, assume that $x_i, x_j \in \{x_0, x_1, \ldots, x_{n-1}\}$. By induction, there exists a path of length p from x_j to x_i with $p \in \{2, 3, \ldots, n - 2\}$. Now we only need to show that there exists a path of length $n - 1$ from x_j to x_i. If $j - i = 1$, then $P[x_j, x_{n-1}]P[x_0, x_i]$ is the desired path. If $j - i = 2$, then $P[x_j, x_n]P[x_0, x_i]$ is the desired path. If $3 \leq j - i \leq n - 1$, then $P[x_j, x_n]P[x_{i+2}, x_{j-1}]P[x_0, x_i]$ is the desired path.

By Lemma 6, we can obtain the following lemma.
Lemma 7. For any \(x \in V(D) \setminus V(P) \) and \(x_i \in V(P) \), if \(x \to x_i \), then \(x \) and every vertex of \(\{x_0, x_1, \ldots, x_{i-1}\} \) are adjacent; if \(x_i \to x \), then \(x \) and every vertex of \(\{x_{i+1}, x_{i+2}, \ldots, x_{k+2}\} \) are adjacent.

Proof. Using the definition of \(D \) and every vertex \(x \to x_i \), then for any \(x_j \in \{x_0, x_1, \ldots, x_{i-1}\} \), by Lemma 6, there exists a path \(Q \) of length \(k - 1 \) from \(x_i \) to \(x_j \). Then the path \(xQ \) implies \(\overline{xy} \). If \(x_i \to x \), then for any \(x_j \in \{x_{i+1}, x_{i+2}, \ldots, x_{k+2}\} \), by Lemma 6, there exists a path \(R \) of length \(k - 1 \) from \(x_j \) to \(x_i \). Then the path \(Rx \) implies \(\overline{xy} \).

Using Lemma 7, Lemma 4 can be improved to the following result.

Lemma 8. For any \(x \in B \), either \(x \) and every vertex of \(V(P) \) are adjacent or there exist two vertices \(x_i, x_s \in V(P) \) with \(4 \leq t + 1 < s \leq k - 1 \) such that \(\{x_s, \ldots, x_{k+2}\} \leftrightarrow x \leftrightarrow \{x_0, \ldots, x_t\} \).

Proof. If \(x \) and every vertex of \(V(P) \) are adjacent, then we are done. Suppose not. By the definition of \(B \), \((x, V(P)) \neq \emptyset \) and \((V(P), x) \neq \emptyset \). Take \(t = \max\{i : x \to x_i\} \) and \(s = \min\{j : x_j \to x\} \). By Lemma 7, \(x \) and every vertex \(\{x_0, \ldots, x_t\} \cup \{x_s, \ldots, x_{k+2}\} \) are adjacent. Moreover, since \(x \) and some vertex of \(V(P) \) are not adjacent, we can conclude \(s > t + 1 \) and \(\{x_s, \ldots, x_{k+2}\} \leftrightarrow x \leftrightarrow \{x_0, \ldots, x_t\} \). By Lemma 4, \(t \geq 3 \) and \(s \leq k - 1 \).

Lemma 9. Let \(Q = z_0z_1 \cdots z_n \) be a path of length \(n \) with \(1 \leq n \leq k - 1 \) in \(D - V(P) \). For some \(x_i \in V(P) \), if \(z_n \to x_i \), then \(z_0 \) and \(z_{i+(k-n-1)} \) are adjacent; if \(x_i \to z_0 \), then \(z_n \) and \(z_{i-(k-n-1)} \) are adjacent, where the subscripts are taken modulo \(k + 3 \).

Proof. Using the definition of \(k \)-quasi-transitive digraphs, the proof is easy and so we omit it.
exist \(x_j \in V(P) \) and \(y' \in O \) such that \(y' \to v \to x_j \). Then the path \(x_0 y' v x_j \) implies that \(d(x_0, x_j) \leq 3 \). Hence \(j \leq 3 \), which means \(\{x_4, x_5, \ldots, x_{k+2}\} \to v \).

Note that \(k - 2 \geq 4 \). Thus \(u \neq v \), which implies \(B_2' \cap B_0'' = \emptyset \). Hence \(B_2' \to O \) and \(I \to B_0'' \). If \(z \to u \), then considering the path \(zu x' \), by Lemma 9, \(z \) and every vertex of \(V(P) \) are adjacent, a contradiction. Hence \(B_2' \to B_1 \). If \(v \to z \), then considering the path \(y' v z \), by Lemma 9, \(z \) and every vertex of \(V(P) \) are adjacent, a contradiction. Hence \(B_1 \to B_0'' \). If \(k = 6 \), denote the path \(R = x_{k+2} x_{n_0} \). If \(k \geq 7 \), by Lemma 6, there exists a path of length \(k - 5 \) from \(x_{k+2} \) to \(x_{n_0} \), denote it by \(R \). If \(v \to u \), then \(zy' vux' R \) implies \(\overline{x_{n_0}} \), a contradiction. Hence \(B_2' \to B_0'' \).

Theorem 10. If \(D - V(P) \) is strong, then \(D \) is Hamiltonian.

Proof. By Lemma 3, \(D - V(P) \) is a semicomplete digraph. Hence \(D - V(P) \) contains a Hamiltonian cycle, denote it by \(H = y_0 y_1 \cdots y_{m_0} \). Clearly, if there exists a pair of arcs \(x_i x_{i+1} \in A(P) \) and \(y_j y_{j+1} \in A(H) \) such that \(x_i \to y_{j+1} \) and \(y_{j+1} \to x_{i+1} \), then \(D \) contains a Hamiltonian cycle \(x_i H[y_{j+1}, y_j]P[x_{i+1}, x_i] \). Next we shall find out such a pair of arcs. Suppose \(O \neq \emptyset \). Since \(D \) is strong, \(B \cup I \neq \emptyset \) and there exists \(y_j \in V(H) \) such that \(y_j \in B \cup I \) and \(y_{j+1} \in O \). There exists \(x_i \in V(P) \) such that \(y_j \to x_i \). Then \(y_j y_{j+1} \) and \(x_{i-1} x_i \) are the desired arcs. Now assume \(O = \emptyset \). Analogously, assume \(I = \emptyset \) and so \(V(D) \setminus V(P) = B \). If \(B_1 = \emptyset \), then \(D \) is semicomplete and so \(D \) is Hamiltonian. Now assume that \(B_1 \neq \emptyset \). If \(|V(H)| = 1 \), then \(y_0 \in B_1 \) and \(x_{k+2} y_0 x_0 x_1 \cdots x_{k+2} \) is a Hamiltonian cycle of \(D \). Assume \(|V(H)| \geq 2 \). If there exist two consecutive vertices \(y_j, y_{j+1} \in B_1 \), then \(y_j y_{j+1} \) and \(x_{k+2} x_0 \) are the desired arcs. Assume there is no such a pair of arcs. So there exists a pair of vertices \(y_j, y_{j+1} \in V(H) \) such that \(y_j \in B_2 \) and \(y_{j+1} \in B_1 \). If \(y_j \to x_0 \) then \(y_j y_{j+1} \) and \(x_{k+2} x_0 \) are the desired arcs. Assume \(x_0 \to y_j \). If \(|V(H)| = 2 \), then \(x_0 y_j y_{j+1} x_1 x_2 \cdots x_{k+2} x_0 \) is a Hamiltonian cycle of \(D \). Assume \(|V(H)| \geq 3 \). According to the above argument, \(y_{j+2} \in B_2 \). If \(y_{j+2} \to x_{k+2} \), then \(x_0 y_j y_{j+1} y_{j+2} x_{k+2} \) is a path of length 4 from \(x_0 \) to \(x_{k+2} \), a contradiction to \(d(x_0, x_{k+2}) \geq 8 \). Thus \(x_{k+2} \to y_{j+2} \). Then \(y_{j+1} y_{j+2} \) and \(x_{k+2} x_0 \) are the desired arcs.

Theorem 11. If \(B_2 = \emptyset \) or for any \(x \in B_2 \), \(x_{k+2} \to x \to x_0 \), then \(D \) is Hamiltonian.

Proof. If \(D - V(P) \) is strong, then, by Theorem 10, we are done. If \(D - V(P) \) is not strong, then let \(D_1, D_2, \ldots, D_t \) be strong components of \(D - V(P) \), where \(t \geq 2 \). Since \(D \) is strong, there exist \(x \in V(D_1) \) and \(y \in V(D_t) \) such that \((V(P), x) \neq \emptyset \) and \((y, V(P)) \neq \emptyset \). By the hypothesis of this theorem and Lemmas 4 and 5, \(x_{k+2} \to x \) and \(y \to x_0 \). It is easy to see that there exists a Hamiltonian path \(R \) from \(x \) to \(y \) in \(D - V(P) \). So \(x_{k+2} R x_0 x_1 \cdots x_{k+2} \) is a Hamiltonian cycle of \(D \).
Suppose $D - V(P)$ is not strong and there exists a vertex $u \in B_2$ such that $u \rightarrow x_{k+2}$, we may construct some k-quasi-transitive digraphs such that they are not Hamiltonian. For example, let $V(D) \setminus V(P) = \{u, v\}$ and $u \rightarrow v$, \(\{x_{k-1}, x_k, x_{k+1}, x_{k+2}\} \rightarrow v \rightarrow \{x_0, x_1, x_2, x_3\}\) and \(x_{k+1} \rightarrow u \rightarrow \{x_0, x_1, \ldots, x_k, x_{k+2}\}\). It is not difficult to see that D contains no Hamiltonian cycle.

Acknowledgement

This work is supported by the National Natural Science Foundation for Young Scientists of China (11401354) (11501490) (11501341).

References

Received 9 May 2018
Accepted 5 November 2018