DESCRIBING NEIGHBORHOODS OF 5-VERTICES IN 3-POLYTOPES WITH MINIMUM DEGREE 5 AND WITHOUT VERTICES OF DEGREES FROM 7 TO 11

OLEG V. BORODIN, ANNA O. IVANOVA

AND

OLESYA N. KAZAK

Institute of Mathematics Siberian Branch
Russian Academy of Sciences
Novosibirsk, 630090, Russia

e-mail: brdnoleg@math.nsc.ru
shmgannanna@mail.ru
agazandjelos@gmail.com

Abstract

In 1940, Lebesgue proved that every 3-polytope contains a 5-vertex for which the set of degrees of its neighbors is majorized by one of the following sequences:

\[(6, 6, 7, 7), (6, 6, 6, 7, 9), (6, 6, 6, 6, 11)\],
\[(5, 6, 7, 7, 8), (5, 6, 6, 7, 12), (5, 6, 6, 8, 10), (5, 6, 6, 6, 17), (5, 5, 7, 7, 13), (5, 5, 7, 8, 10), (5, 5, 6, 7, 27), (5, 5, 6, 6, \infty), (5, 5, 6, 8, 15), (5, 5, 6, 9, 11), (5, 5, 5, 7, 41), (5, 5, 5, 8, 23), (5, 5, 5, 9, 17), (5, 5, 5, 10, 14), (5, 5, 5, 11, 13)\].

In this paper we prove that every 3-polytope without vertices of degree from 7 to 11 contains a 5-vertex for which the set of degrees of its neighbors is majorized by one of the following sequences: \((5, 5, 6, 6, \infty), (5, 6, 6, 6, 15), (6, 6, 6, 6, 6) \), where all parameters are tight.

Keywords: planar graph, structure properties, 3-polytope, neighborhood.

2010 Mathematics Subject Classification: 05C15.

\[1\] The work was funded by the Russian Science Foundation, grant 16–11–10054.
1. Introduction

By a 3-polytope we mean a finite 3-dimensional convex polytope. As proved by Steinitz [31], the 3-polytopes are in one to one correspondence with the 3-connected planar graphs.

The degree \(d(v) \) of a vertex \(v \) (\(r(f) \) of a face \(f \)) in a 3-polytope \(P \) is the number of edges incident with it. By \(\Delta \) and \(\delta \) we denote the maximum and minimum vertex degrees of \(P \), respectively. A \(k \)-vertex (\(k \)-face) is a vertex (face) with degree \(k \); a \(k^+ \)-vertex has degree at least \(k \), etc.

The weight of a face in \(P \) is the degree sum of its boundary vertices, and \(w(P) \), or simply \(w \), denotes the minimum weight of \(5^- \)-faces in \(P \).

In 1904, Wernicke [32] proved that every 3-polytope with \(\delta = 5 \) has a 5-vertex adjacent with a 6\(^-\)-vertex, which was strengthened by Franklin [15] in 1922, who proved that every 3-polytope with \(\delta = 5 \) has a 5-vertex adjacent with two 6\(^-\)-vertices. Recently, Borodin and Ivanova [11] proved that every such 3-polytope has also a vertex of degree at most 6 adjacent to a 5-vertex and another vertex of degree at most 6, which is tight.

We say that \(v \) is a vertex of type \((k_1, k_2, \ldots) \) or simply a \((k_1, k_2, \ldots) \)-vertex if the set of degrees of the vertices adjacent to \(v \) is majorized by the vector \((k_1, k_2, \ldots) \). If the order of neighbors in the type is not important, then we put a line over the corresponding degrees. The following description of the neighborhoods of 5-vertices in a 3-polytope with \(\delta = 5 \) was given by Lebesgue [28, p. 36] in 1940, which includes the results of Wernicke [32] and Franklin [15].

Theorem 1 (Lebesgue [28]). Every triangulated 3-polytope with minimum degree 5 contains a 5-vertex of one of the following types:

\[
\begin{align*}
(6, 6, 7, 7, 7), & \quad (6, 6, 6, 7, 9), & \quad (6, 6, 6, 6, 11), \\
(5, 6, 7, 7, 8), & \quad (5, 6, 6, 7, 11), & \quad (5, 6, 6, 8, 8), \\
(5, 6, 6, 9, 7), & \quad (5, 7, 6, 6, 12), & \quad (5, 8, 6, 6, 10), & \quad (5, 6, 6, 6, 17), \\
(5, 5, 7, 7, 8), & \quad (5, 13, 5, 7, 7), & \quad (5, 10, 5, 7, 8), \\
(5, 8, 5, 7, 9), & \quad (5, 7, 5, 7, 10), & \quad (5, 7, 5, 8, 8), \\
(5, 5, 7, 6, 12), & \quad (5, 5, 8, 6, 10), & \quad (5, 6, 5, 7, 12), \\
(5, 6, 5, 8, 10), & \quad (5, 17, 5, 6, 7), & \quad (5, 11, 5, 6, 8), \\
(5, 11, 5, 6, 9), & \quad (5, 7, 5, 6, 13), & \quad (5, 8, 5, 6, 11), & \quad (5, 9, 5, 6, 10), & \quad (5, 6, 6, 5, \infty), \\
(5, 5, 7, 5, 41), & \quad (5, 5, 8, 5, 23), & \quad (5, 5, 9, 5, 17), & \quad (5, 5, 10, 5, 14), & \quad (5, 5, 11, 5, 13).
\end{align*}
\]

Theorem 1, along with other ideas in Lebesgue [28], has many applications to plane graph coloring problems (first examples of such applications and a recent survey can be found in [7, 30]). Some parameters of Lebesgue’s Theorem were improved for narrow classes of plane graphs. For example, in 1963, Kotzig [27] proved that every plane triangulation with \(\delta = 5 \) satisfies \(w \leq 18 \) and conjectured
that \(w \leq 17 \). In 1989, Kotzig’s conjecture was confirmed by Borodin [3] in a more general form.

Theorem 2 (Borodin [3]). Every 3-polytope with \(\delta = 5 \) has a \((5,5,7)\)-face or a \((5,6,6)\)-face, where all parameters are tight.

By a minor \(k \)-star \(S_k^m \) we mean a star with \(k \) rays centered at a 5-vertex. The Lebesgue’s description [28, p.36] of the neighborhoods of 5-vertices in 3-polytopes with minimum degree 5, \(P_5 \), shows that there is a 5-vertex with three 8-vertices. Another corollary of Lebesgue’s description [28] is that \(w(S_3^m) \leq 24 \), which was improved in 1996 by Jendrol’ and Madaras [23] to the sharp bound \(w(S_3^m) \leq 23 \). Furthermore, Jendrol’ and Madaras [23] gave a precise description of minor 3-stars in \(P_5 \): there is a \((6,6,6)\)- or \((5,6,7)\)-star.

Also, Lebesgue [28] proved that \(w(S_4^m) \leq 31 \), which was strengthened by Borodin and Woodall [13] to the sharp bound \(w(S_4^m) \leq 30 \). Note that \(w(S_3^m) \leq 23 \) easily implies \(w(S_2^m) \leq 17 \) and immediately follows from \(w(S_4^m) \leq 30 \) (in both cases, it suffices to delete a vertex of maximum degree from a minor star of minimum weight). In [9], Borodin and Ivanova obtained a tight description of minor 4-stars in \(P_5 \).

As for minor 5-stars in \(P_5 \), it follows from Lebesgue [28, p.36] that if there are no minor \((5,6,6)\)-stars, then \(w(S_5^m) \leq 68 \) and \(h(S_5^m) \leq 41 \). Borodin, Ivanova, and Jensen [10] showed that the presence of minor \((5,5,6,6)\)-stars can make \(w(S_5^m) \) arbitrarily large and otherwise lowered Lebesgue’s bounds to \(w(S_5^m) \leq 55 \) and \(h(S_5^m) \leq 28 \). On the other hand, a construction in [10] shows that \(w(S_5^m) \geq 48 \) and \(h(S_5^m) \geq 20 \). Recently, Borodin and Ivanova [12] proved that \(w(S_5^m) \leq 51 \) and \(h(S_5^m) \leq 23 \).

More results on the structure of edges and higher stars in various classes of 3-polytopes can be found in [1, 2, 4–6, 8, 9, 14, 16, 19–22, 24–26], with a detailed summary in [12].

In [28] Lebesgue did not give a proof of Theorem 1 and only gave its idea. In 2013, Ivanova and Nikiforov [17] gave a full proof of Theorem 1 and corrected the following imprecisions in its statement:

1. in the type \((5,11,5,6,8)\) there should be 15 instead of 11;
2. in the type \((5,17,5,6,7)\) there should be 27 instead of 17;
3. in the type \((6,6,6,6,11)\) the line is not needed;
4. instead of type \((5,6,7,7,8)\) there should be \((5,8,6,7,7)\) and \((5,7,6,8,7)\);
Corollary 4. Every one of the following types: degree 5 confirming the tightness of the type (\(5, 7, 7, 8\)) it suffices to write (\(5, 7, 7, 8\)).

Later on, Ivanova and Nikiforov [18, 29] improved the corrected version of Theorem 1 by replacing 41 and 23 in the types (\(5, 7, 5, 41\)) and (\(5, 5, 8, 5, 23\)) to 31 and 22, respectively.

Theorem 3 (Ivanova, Nikiforov [17, 18, 29]). Every 3-polytope with minimum degree 5 contains a 5-vertex of one of the following types:

- (6, 6, 6, 7, 7), (6, 6, 6, 7, 9), (6, 6, 6, 6, 8),
- (5, 5, 7, 13), (5, 5, 7, 8, 10), (5, 5, 5, 10, 14), (5, 5, 5, 11, 13).

Theorem 1 subject to the corrections (1)–(6) implies the following fact.

Corollary 4. Every 3-polytope with minimum degree 5 contains a 5-vertex of one of the following types:

- (6, 6, 6, 7, 7), (6, 6, 6, 7, 9), (6, 6, 6, 6, 11),
- (5, 5, 5, 7, 13), (5, 5, 5, 8, 23), (5, 5, 5, 9, 17), (5, 5, 5, 10, 14), (5, 5, 5, 11, 13).

We can see already from Theorem 1 that if vertices of degree from 7 to 11 are forbidden, then there is a 5-vertex of one of the following types: (\(5, 5, 5, 6, \infty\)), (\(5, 5, 6, 6, 17\)), (6, 6, 6, 6, 6).

The purpose of this note is to obtain a precise description of 5-stars in this subclass of \(P_5\).

Theorem 5. Every 3-polytope with minimum degree 5 and without vertices of degree from 7 to 11 contains a 5-vertex of one of the following types: (\(5, 5, 5, 6, \infty\)), (\(5, 6, 6, 6, 15\)), (6, 6, 6, 6, 6), where all parameters are tight.

2. **Proving Theorem 5**

All parameters in Theorem 5 are best possible. Indeed, the following construction confirming the tightness of the type (\(5, 5, 5, 6, \infty\)) appears in [10]. Take three
concentric n-cycles $C^i = v_1^i \cdots v_n^i$, where n is not limited and $1 \leq i \leq 3$, and join C^2 with C^1 by edges $v_j^2 v_j^1$ and $v_j^2 v_{j+1}^1$, where $1 \leq j \leq n$ (addition modulo n). Then do the same with C^2 and C^3. Finally, join all vertices of C^1 with a new n-vertex, and do the same for C^3.

The tightness of $(6, 6, 6, 6, 6)$ is confirmed by putting a 5-vertex in each face of the dodecahedron.

To confirm the tightness of $(5, 6, 6, 6, 15)$, we take the dodecahedron and insert the fragment shown in Figure 1 into each face. As a result, we have a 3-polytope with only $(5, 6, 6, 6, 15)$-vertices.

Figure 1. The insert in each face of the dodecahedron to produce a 3-polytope with 5-vertices only of type $(5, 6, 6, 6, 15)$.

Now suppose a 3-polytope P' is a counterexample to Theorem 5. Let P be a counterexample on the same number of vertices with maximum possible number of edges.

Remark 6. In P, each 4^+-face $f = v_1 \cdots v_{d(f)}$ with $d(v_1) = 5$ or $d(v_1) \geq 15$ satisfies $d(v_i) \geq 6$ whenever $3 \leq i \leq d(f) - 1$. Otherwise, we could put a diagonal v_1v_i, which contradicts the maximality of P.

Corollary 7. In P, each 4^+-face has at most two vertices with degree 5 and/or at least 15. Moreover, if there are precisely two such vertices, then they are adjacent to each other.
2.1. Discharging

The sets of vertices, edges, and faces of P are denoted by V, E, and F, respectively. Euler’s formula $|V| - |E| + |F| = 2$ for P implies

$$
\sum_{v \in V} (d(v) - 6) + \sum_{f \in F} (2r(f) - 6) = -12.
$$

(1)

We assign an initial charge $\mu(v) = d(v) - 6$ to every vertex v and $\mu(f) = 2d(f) - 6$ to every face f, so that only 5^--vertices have negative charge. Using the properties of P as a counterexample, we define a local redistribution of charges, preserving their sum, such that the new charge $\mu'(x)$ is non-negative whenever $x \in V \cup F$. This will contradict the fact that the sum of the new charges is, by (1), equal to -12. The technique of discharging is often used in solving structural and coloring problems on plane graphs.

Let $v_1, \ldots, v_{d(v)}$ denote the neighbors of a vertex v in a cyclic order round v, and let $f_1, \ldots, f_{d(v)}$ be the faces incident with v in the same order.

We use the following rules of discharging (see Figure 2).

R1. Every 4^+-face gives 1 to every incident 5-vertex.

R2. Every 12^+-vertex v gives a simplicial 5-vertex v_2 the following charge through a face $f = v_2vv_3$:

(a) $\frac{1}{4}$ if $d(v_3) = 5$,

(b) $\frac{1}{4}$ if $d(v_3) = 6$,

(c) $\frac{1}{4}$ if $d(v_3) = 7$,

(d) $\frac{1}{4}$ if $d(v_3) = 8$.

R3. Every 6^+-vertex gives a 12^+-vertex v_2 the following charge through a face $f = v_2vv_3$:

(a) $\frac{1}{4}$ if $d(v_3) = 5$,

(b) $\frac{1}{4}$ if $d(v_3) = 6$.

Figure 2. Rules of discharging.
(b) \(\frac{1}{2} \) if \(d(v_3) \geq 6 \),
with the following exception.

e If \(d(v) \geq 16, d(v_1) = 5, d(v_3) = d(x) = d(y) = 6 \), where \(v_2 \) is incident to
face \(v_2xy \), then \(v \) gives \(\frac{2}{3} \) to \(v_2 \) through face \(v_2v_3 \) and \(\frac{1}{2} \) through face \(v_1v_2 \).

R3. Suppose a simplicial 5-vertex \(v \) is adjacent to a 16-vertex \(v_1 \), simplicial 5-
vertices \(v_2 \) and \(v_5 \), and \(v_2 \) is surrounded by \(v_1, v, v_3, x, y \), where \(d(v_3) = d(x) = d(y) = 6 \), (consequently \(d(v_4) \geq 12 \)), while \(v_5 \) is surrounded by \(v_1, v, v_4, w, z \),
where \(d(z) \geq 6 \). Then \(v \) gives \(\frac{1}{4} \) to \(v_1 \).

2.2. Proving \(\mu'(x) \geq 0 \) whenever \(x \in V \cup F \)

First consider a face \(f \) in \(P \). If \(d(f) = 3 \), then \(f \) does not participate in
discharging, and so \(\mu'(v) = \mu(f) = 2 \times 3 - 6 = 0 \). Note that every \(4^+ \)-face is inci-
dent with at most two 5-vertices due to Corollary 7, which implies that \(\mu'(v) = 2d(f) - 6 - 2 \times 1 \geq 0 \) by R1.

Now let \(v \) be a vertex in \(P \).

Case 1. \(d(v) = 5 \). If \(v \) is incident with a \(4^+ \)-face, then \(\mu'(v) \geq 5 - 6 + 1 = 0 \)
due to R1. In what follows we can assume that \(v \) is simplicial.

Subcase 1.1. \(v \) is incident only with \(6^+ \)-vertices. Then there is at least one \(v_i \\
with \(d(v_i) \geq 12 \) due to the absence of \((6,6,6,6,6) \)-vertices in \(P \). Hence, \(\mu'(v) \geq -1 + 2 \times \frac{1}{2} = 0 \) by R2(b).

Subcase 1.2. \(v \) is incident with precisely one 5-vertex. Since there is no \((5,6,6,6,15) \)-vertex in \(P \), we can assume that \(v \) has either at least two \(12^+ \)-neighbors,
or precisely one \(16^+ \)-neighbor. So we have either \(\mu'(v) \geq -1 + 2 \times \frac{1}{2} + 2 \times \frac{1}{4} > 0 \)
by R2(a),(b), or \(\mu'(v) = -1 + \frac{3}{2} + \frac{1}{4} = 0 \) by R2(e), respectively.

Subcase 1.3. \(v \) is incident with at least two 5-vertices. Note that now R2(e)
is not applicable to \(v \). Also note that \(v \) cannot be incident with more than three
5-vertices due to the absence of \((5,5,6,6,\infty) \)-vertices in \(P \), which implies that \(v \)
has at least two \(12^+ \)-neighbors. If \(v \) is incident with precisely three 5-vertices,
then we have \(\mu'(v) \geq -1 + 4 \times \frac{1}{4} = 0 \) by R2(a),(b).

Suppose \(v \) is incident with precisely two 5-vertices. If \(v \) does not participate
in R3, then \(\mu'(v) \geq -1 + 3 \times \frac{1}{4} + \frac{1}{2} > 0 \) by R2(a),(b). Note that if \(v \) participates in
R3, then it gives \(\frac{1}{4} \) only to one 16-neighbor, hence \(\mu'(v) \geq -1 + 3 \times \frac{1}{4} + \frac{1}{2} - \frac{1}{4} = 0 \).

Case 2. \(d(v) = 6 \). Since \(v \) does not participate in discharging, we have
\(\mu'(v) = \mu'(v) = 6 - 6 = 0 \).

Case 3. \(12 \leq d(v) \leq 15 \). Now R2(e) is not applicable to \(v \), so \(v \) sends at most
\(\frac{d(v) - 12}{2} \) through each face by R2(a),(b), which implies that \(\mu'(v) \geq d(v) - 6 - d(v) \times \frac{1}{2} = \\
\frac{d(v) - 12}{2} \geq 0 \).
Case 4. 16 ≤ d(v) ≤ 17. Note that v gives at most $\frac{2}{3}$ through each 3-face and only to a simplicial 5-vertex. If v gives nothing through at least one incident face, then $\mu'(v) \geq 16 - 6 - 15 \times \frac{2}{3} = 0$ by R1, R2. Further, we can assume that v is simplicial and each face takes away some positive charge from v, which implies that each face at v is incident with a 5-vertex, and all 5-vertices adjacent to v are simplicial. Thus, $\mu'(v) \geq d(v) - 6 - d(v) \times \frac{2}{3} = \frac{d(v) - 18}{3}$, and we have the deficiency $\frac{1}{3}$ for a 17-vertex and $\frac{2}{3}$ for a 16-vertex with respect to donating $\frac{2}{3}$ per face.

Suppose $S_k = v_1, \ldots, v_k$ is a sequence of neighbors of v with $d(v_1) \geq 6$, $d(v_k) \geq 6$, while $d(v_i) = 5$ whenever $2 \leq i \leq k-1$ and $k \geq 3$, and f_1, \ldots, f_{k-1} are the corresponding faces. (It is not excluded that $S_k = S_{d(v)}$, which happens when v has precisely one 6^\pm-neighbor.) We say that the sequence of faces f_1, \ldots, f_{k-1} saves ε with respect to the level of $\frac{2}{3}$ if these faces take away the total of $(k-1) \times \frac{2}{3} - \varepsilon$ from v.

Remark 8. Only v_2 and v_{k-1} in S_k can receive the charge $\frac{2}{3}$ from v by R2(e), while each of the other 5-vertices v_i receives precisely $\frac{1}{3}$ from v through each incident face. So, if $k \geq 5$, then v_2 receives at most 1, and v_3 receives $\frac{1}{2}$ from v through incident faces.

Remark 9. If v is completely surrounded by 5-vertices, then $\mu'(v) \geq d(v) - 6 - \frac{d(v)}{3} = \frac{d(v) - 12}{3} > 0$, and hence we can assume from now on that the neighborhood of v is partitioned into S_ks.

(P1) If $k = 3$, then $\varepsilon = \frac{1}{3}$. Indeed, here v_2 receives $\frac{1}{2}$ through each of the faces v_1v_2 and v_2v_3 by R2(b), whence $\varepsilon = 2 \times \frac{2}{3} - 2 \times \frac{1}{2} = \frac{1}{3}$.

(P2) If $k = 4$, then $\varepsilon = 0$. Now each of v_2 and v_3 receives at most 1 from v by Remark 8, so $\varepsilon = 3 \times \frac{2}{3} - 2 = 0$.

(P3) If $k = 5$, then $\varepsilon = \frac{2}{3}$. Suppose w_1, \ldots, w_4 are the neighbors of v_1, \ldots, v_5 such that there are the faces v_iw_{i+1}, where $1 \leq i \leq 4$.

If v_2 receives 1 by R2(e), then $d(w_1) = d(w_2) = 6$. Hence, $d(w_4) \geq 12$ due to the absence of a $(5,5,6,6,\infty)$-vertex in P, which implies that v_4 is adjacent to two 12^\pm-vertices, whence it receives $\frac{1}{2}$ from v through f_4 and $\frac{1}{3}$ through f_3. Moreover, v_3 gives $\frac{1}{4}$ to v by R3. Hence, $\varepsilon = 4 \times \frac{2}{3} - 1 - \frac{1}{2} - \frac{3}{1} + \frac{1}{4} = \frac{2}{3}$.

If R2(e) is not applicable to v, then $\varepsilon = 4 \times \frac{2}{3} - 4 \times \frac{1}{2} = \frac{2}{3}$.

(P4) If $k = 6$, then $\varepsilon = \frac{1}{3}$. Here, each of v_2 and v_5 receives at most 1, while each of v_3 and v_4 receives $\frac{1}{2}$ from v by Remark 8, so $\varepsilon = 5 \times \frac{2}{3} - 2 \times 1 - 2 \times \frac{1}{2} = \frac{1}{3}$.

(P5) If $k = 7$, then $\varepsilon = \frac{1}{2}$. Now we have $\varepsilon = 6 \times \frac{2}{3} - 2 \times 1 - 3 \times \frac{1}{2} = \frac{1}{2}$ by Remark 8.
(P6) If \(k \geq 8 \), then \(\varepsilon \geq \frac{2}{3} \). Now we have \(\varepsilon = (k - 1) \times \frac{2}{3} - 2 \times 1 - (k - 4) \times \frac{1}{2} = \frac{k - 4}{6} \geq \frac{2}{3} \).

If \(d(v) = 17 \), then it suffices to assume that the neighborhood of \(v \) consists of pairs of 5-vertices separated from each other by \(6^+ \)-vertices by (P1)–(P6) (since otherwise we pay off the deficiency), which is impossible due to the fact that 17 is not divisible by 3.

Suppose that \(d(v) = 16 \) and \(\mu'(v) < 0 \). As follows from (P1)–(P6), the neighborhood of \(v \) can have at most one of the paths \(S_{t+2} \) of \(t \) vertices of degree 5, where \(t \in \{1, 4, 5\} \), while all other vertices are partitioned into pairs of 5-vertices separated from each other by 6-vertices. Indeed, if there are either two paths with \(t \in \{1, 4, 5\} \), or at least one path with \(t = 3 \) or \(t \geq 6 \), then we can pay off the deficiency \(\frac{2}{3} \), a contradiction. But none of these cases is possible due to the divisibility by 3. Namely, if \(t = 1 \) we have \(16 - 2 = 14 \) faces to be divided into triplets of faces with a sequence \(S_4 \) of neighbors of \(v \) as in (P2), or \(16 - 5 = 11 \) and \(16 - 6 = 10 \) faces for \(t = 4 \) and \(t = 5 \), respectively; a contradiction.

Case 6. \(d(v) \geq 18 \). Now \(\mu'(v) \geq d(v) - 6 - d(v) \times \frac{2}{3} = \frac{d(v) - 18}{3} \geq 0 \) by R2.

Thus we have proved \(\mu'(x) \geq 0 \) for every \(x \in V \cup F \), which contradicts (1) and completes the proof of Theorem 5.

References

Describing Neighborhoods of 5-Vertices in 3-Polytopes

Received 12 July 2016
Revised 13 January 2017
Accepted 13 January 2017