THE LIST DISTINGUISHING NUMBER EQUALS THE DISTINGUISHING NUMBER FOR INTERVAL GRAPHS

POPPIE IMMEL AND PAUL S. WENGER

School of Mathematical Sciences
Rochester Institute of Technology
Rochester, NY, USA

e-mail: pgi8114@rit.edu
pswsma@rit.edu

Abstract

A distinguishing coloring of a graph G is a coloring of the vertices so that every nontrivial automorphism of G maps some vertex to a vertex with a different color. The distinguishing number of G is the minimum k such that G has a distinguishing coloring where each vertex is assigned a color from $\{1, \ldots, k\}$. A list assignment to G is an assignment $L = \{L(v)\}_{v \in V(G)}$ of lists of colors to the vertices of G. A distinguishing L-coloring of G is a distinguishing coloring of G where the color of each vertex v comes from $L(v)$. The list distinguishing number of G is the minimum k such that every list assignment to G in which $|L(v)| = k$ for all $v \in V(G)$ yields a distinguishing L-coloring of G. We prove that if G is an interval graph, then its distinguishing number and list distinguishing number are equal.

Keywords: distinguishing, distinguishing number, list distinguishing, interval graph.

2010 Mathematics Subject Classification: 05C60.

References

doi:10.1137/07068686X

Received 15 September 2015
Revised 23 March 2016
Accepted 23 March 2016