ON THE H-FORCE NUMBER OF HAMILTONIAN GRAPHS
AND CYCLE EXTENDABILITY

ERHARD HEXEL

Department of Mathematics
Technische Universität Ilmenau
Postfach 0565, D-98684 Ilmenau, Germany

e-mail: erhard.hexel@tu-ilmenau.de

Abstract

The H-force number $h(G)$ of a hamiltonian graph G is the smallest cardinality of a set $A \subseteq V(G)$ such that each cycle containing all vertices of A is hamiltonian. In this paper a lower and an upper bound of $h(G)$ is given. Such graphs, for which $h(G)$ assumes the lower bound are characterized by a cycle extendability property. The H-force number of hamiltonian graphs which are exactly 2-connected can be calculated by a decomposition formula.

Keywords: cycle, hamiltonian graph, H-force number, cycle extendability.

2010 Mathematics Subject Classification: 05C45.

1. Introduction

Throughout this paper, only finite graphs without loops or multiple edges are considered. The number of vertices of a graph G, i.e., its order will be denoted by n. We use the standard graph terminology according to [3].

Let G be a hamiltonian graph with vertex set $V = V(G)$ and edge set $E = E(G)$. A nonempty vertex set $X \subseteq V(G)$ is called a hamiltonian cycle enforcing set (for short, H-force set) of G if every X-cycle of G (i.e., a cycle of G containing all vertices of X) is a hamiltonian one. Let $h(G)$ denote the smallest cardinality of an H-force set of G and call it the H-force number of G. The concepts of H-force set and H-force number were first given by Fabrici et al. (see [4]) and studied there for several special families of hamiltonian graphs. Timková (see [9]) determined the H-force number of generalized dodecahedral graphs. Note also, that the concepts of H-force set and H-force number were extended to hamiltonian digraphs and hypertournaments in [10] and [7], respectively.
The authors in [4] observed that the H-force number $h(G)$ of a hamiltonian graph G satisfies

- $h(G) = 1$ if and only if G is a cycle,
- $h(G) = n$ if and only if G is 1-hamiltonian (that is, if G is hamiltonian and $G - v$ is hamiltonian for every $v \in V$).

For a hamiltonian graph G, we define sets $S = S(G) = \{x \in V \mid G - x$ is hamiltonian$\}$ and $T = T(G) = \{x \in V \mid G - x$ is 2-connected$\}$. Then, we have $S \subseteq T$. Let $s(G) = |S(G)|$ and $t(G) = |T(G)|$.

Proposition 1. Let G be a hamiltonian graph and P be a path of G containing no branch vertex of G, i.e., no vertex of degree at least 3 in G. Then, every smallest H-force set $F \subseteq V(G)$ contains at most one vertex of P.

Let H be the family of hamiltonian graphs that do not contain adjacent vertices of degree 2. Also, let G' be the graph formed from a hamiltonian graph G by replacing each maximal path not containing a branch vertex by a single vertex. Then, G' is hamiltonian and has no adjacent vertices of degree 2, so $G' \in H$. Because $h(G') = h(G)$, it is sufficient to restrict our study to the family H.

The main results of this paper are Theorems 2, 7, 8 and 11. Theorem 2 shows that $s(G)$ and $t(G)$ form bounds for the H-force number $h(G)$. After this theorem, we discuss some consequences. Theorem 7 contains a decomposition formula for the H-force number of hamiltonian graphs which are exactly 2-connected. In Theorem 8 hamiltonian graphs G for which $S(G)$ is an H-force set are characterized by a cycle extendability property. Eventually, a sum formula for hamiltonian graphs G with $s(G) < h(G)$ is proved in Theorem 11.

2. Results and Proofs

Theorem 2. Let $G \in H$. Then

$$s(G) \leq h(G) \leq t(G).$$

The proof of this theorem requires the following exchange property.

Lemma 3. Let $G \in H$ and let $F \subseteq V$ be a smallest H-force set of G. Then, for every vertex $v \in F \setminus T$ there exists a vertex $u \in T$ such that $(F \setminus \{v\}) \cup \{u\}$ is an H-force set of G.

Proof. Suppose there exists a vertex $v \in V \setminus T$. Then G is exactly 2-connected. Let C be any fixed hamiltonian cycle of G and w be a cut-vertex of $G - v$. Then, C consists of two v-w-paths P_1 and P_2 both of which have at least one inner vertex but no inner vertex in common. Since G is not a cycle, C has a chord.
But, there is no chord connecting an inner vertex of \(P_1 \) with an inner vertex of \(P_2 \). Let \(F \subseteq V \) be a smallest \(H \)-force set of \(G \) (i.e., \(|F| = h(G) \)) and suppose \(v \in F \).

Case 1. The cut-vertex \(w \) of \(G - v \) can be chosen so that each \(P_i \), for \(i = 1, 2 \), has a chord of \(C \), say \(x_i y_i \). Then, the subpath \((x_i, y_i)\) of \(P_i \) contains an inner vertex \(z_i \) such that \(z_i \notin F \). Otherwise, the \(x_i-y_i \)-path on \(C \) which passes \(v \) forms together with \(x_i y_i \) a non-hamiltonian \(F \)-cycle. By the choice of \(F \), \(F \setminus \{v\} \) is not an \(H \)-force set of \(G \), i.e., \(G \) contains a non-hamiltonian \((F \setminus \{v\})\)-cycle \(C' \) not passing \(v \). Since \(z_1 \) and \(z_2 \) belong to different components of \(G - \{v, w\} \) and since \(w \) is a cut-vertex of \(G - v \), every \(z_1-z_2 \)-path of \(G - v \) is passing \(w \) which contradicts the fact that \(C' \) is a cycle.

Case 2. By any choice of the cut-vertex \(w \) of \(G - v \) only one of \(P_1 \) and \(P_2 \) has a chord. Suppose for a fixed \(w \) that \(P_1 \) has no chord. Then \(P_1 \) has only one inner vertex \(u \) where \(d_G(u) = 2 \). Since every hamiltonian cycle of \(G \) passes the edge \(uv \), \(F' := (F \setminus \{v\}) \cup \{u\} \) is also an \(H \)-force set of \(G \). Moreover, we have \(u \in T \) because otherwise there exists a cut-vertex \(z \) of \(G - u \) which is also a cut-vertex of \(G - v \). Hence, \(C \) consists of two \(v-z \)-paths (with no common inner vertices) such that both of them have at least one chord, a contradiction. That proves the assertion.

Proof of Theorem 2. Let \(F \subseteq V \) be any smallest \(H \)-force set of \(G \). Suppose that \(S \) contains a vertex \(x \) such that \(x \notin F \). A hamiltonian cycle \(C \) of \(G - x \) is, obviously, a non-hamiltonian \(F \)-cycle of \(G \). That is a contradiction and proves \(S \subseteq F \) and, consequently, \(s(G) \leq h(G) \).

Let \(F \subseteq V \) be a smallest \(H \)-force set of \(G \). If \(F \subseteq T \) then \(h(G) \leq t(G) \) trivially holds. Otherwise, there exists an \(x \in F \setminus T \). By Lemma 3 there is a \(y \in T \) such that \((F \setminus \{x\}) \cup \{y\} \) is an \(H \)-force set of \(G \), too. The repeated use of the above exchange property finally yields a smallest \(H \)-force set \(F' \subseteq T \) and proves the upper bound.

From the proof of Theorem 2, we have \(S \subseteq F \) and we can choose \(F \) such that \(F \subseteq T \).

Corollary 4. Let \(G \in \mathcal{H} \). Then,

(i) \(s(G) = n \) if and only if \(h(G) = n \).

(ii) If \(s(G) = n - 1 \), then \(h(G) = n - 1 \).

Proof. Statement (i) is an immediate consequence of the lower bound in Theorem 2.

If \(s(G) = n - 1 \), then the lower bound of Theorem 2 implies \(h(G) \geq n - 1 \), and by (i) we have \(h(G) \neq n \) which proves (ii).
The graph G of order 20 shown in Figure 1 is hamiltonian (the bold painted edges form a hamiltonian cycle) with $S = V \setminus \{x, y\}$ and with $V \setminus \{x\}$ as a smallest H-force set confirms that the converse of statement (ii) does not hold.

Theorem 2 has the following two consequences. A planar graph is called outerplanar if it can be embedded in the plane in such a way that every vertex is incident with the unbounded face.

Theorem 5. Let $G \in \mathcal{H}$ be outerplanar. Then $h(G)$ corresponds to the number of vertices of degree 2 whose two neighbours are adjacent.

Proof. Let $G \in \mathcal{H}$ be outerplanar and let $x \in V$. If $d_G(x) \geq 3$ then $x \notin T$ and also $x \notin S$. Assume otherwise $d_G(x) = 2$ and let $y, z \in V$ denote the neighbours of x. If $yz \notin E$ then $x \notin T$ and also $x \notin S$. If $yz \in E$ then $G - x$ is hamiltonian which yields $x \in S$ and, consequently, $x \in T$. Hence, $S = T$ and the statement can be deduced from Theorem 2.

In [4], the H-force number of an outerplanar hamiltonian graph G different from a cycle was proved to be equal to the number of leafs of the weak dual of G. The weak dual of an outerplanar graph G is a tree and is obtained from the dual of G by removing the vertex corresponding to the unbounded face.

Theorem 6. For $G \in \mathcal{H}$, $h(G) = 2$ if and only if $t(G) = 2$.

Proof. Suppose first $h(G) = 2$. Then by Lemma 3 there exists a smallest H-force set $F = \{x, y\}$ of G such that $F \subseteq T$. Assume that there exists a vertex
\(v \in T \setminus F \) which means that \(G - v \) is 2-connected. Then, \(G - v \) and, consequently, \(G \) has two different \(x\)-\(y \)-paths with no common inner vertices. Hence, \(G \) has an \(F \)-cycle not passing \(v \), a contradiction. That proves \(F = T \) and \(t(G) = 2 \).

Suppose now \(t(G) = 2 \). Since \(G \) is not a cycle we have \(h(G) \geq 2 \). And, by Theorem 2 we have \(h(G) \leq 2 \) which completes the proof.

In [4], hamiltonian graphs with \(H \)-force number 2 have been characterized already by a condition on crossed chords of a hamiltonian cycle. In [4] they also noted that every hamiltonian graph with \(h(G) = 2 \) is planar.

Now, we give a decomposition formula with respect to the \(H \)-force number of a hamiltonian graph which is exactly 2-connected. To that end, let \(G \in \mathcal{H} \) be a graph with vertices \(u, v \in V(G) \) such that \(G - \{u, v\} \) is disconnected, i.e., \(u, v \notin T \).

Any given hamiltonian cycle \(C \) of \(G \) can be divided into two \(u \)-\(v \)-paths \(P_1 \) and \(P_2 \) which have no inner vertices in common. For \(i = 1, 2 \), let \(G_i \) denote the graph which results from \(G[V(P_i)] \) (the subgraph of \(G \) induced by \(V(P_i) \)) by introducing an additional vertex \(w_i \) \((w_1 \neq w_2) \) and edges \(uv, uw_i, vw_i \). Obviously, \(G_i \) is also a member of \(\mathcal{H} \).

Theorem 7. Let \(G \in \mathcal{H} \) with \(u, v \in V(G) \) such that \(G - \{u, v\} \) is disconnected, and let \(G_1, G_2 \) be graphs derived from \(G \) as described above. Then,

\[
h(G) = h(G_1) + h(G_2) - 2.
\]

Proof. On the one hand, from \(u, v \notin T(G_i) \) and Lemma 3 it follows that \(G_i \) has a smallest \(H \)-force set \(F_i \subseteq V(G_i) \) such that \(u, v \notin F_i \). \(F_i \) contains \(w_i \) because \(G_i - w_i \) is hamiltonian. Let \(F := (F_1 \setminus \{w_1\}) \cup (F_2 \setminus \{w_2\}) \) and let \(C_F \) denote an \(F \)-cycle of \(G \). \(F_i \setminus \{w_i\} \) is not empty for \(i = 1, 2 \) which implies that neither \(G_1 \) nor \(G_2 \) contains \(C_F \) as a cycle. Suppose that \(C_F \) is not a hamiltonian cycle of \(G \). Then, without loss of generality, there exists a vertex \(x \in V(G) \setminus V(G_2) \) which is not contained in \(F \). Let \(P_{F_1} \) denote the \(u \)-\(v \)-path of \(C_F \) which is contained in \(G_1 \). Then, the cycle obtained by connecting \(P_{F_1} \) with the \(u \)-\(v \)-path \((u, w_1, v)\) is an \(F_1 \)-cycle of \(G_1 \) which is not hamiltonian, a contradiction. Consequently, \(F \) is an \(H \)-force set of \(G \) and

\[
h(G) \leq |F| = |F_1 \setminus \{w_1\}| + |F_2 \setminus \{w_2\}| = (|F_1| - 1) + (|F_2| - 1)
\]

\[= h(G_1) + h(G_2) - 2.\]

On the other hand, Lemma 3 implies that \(G \) has an \(H \)-force set \(F \subseteq V(G) \) where \(|F| = h(G) \) and \(u, v \notin F \). Clearly, \(F_i := (F \cap V(G_i)) \cup \{w_i\} \) is a subset of \(V(G_i) \). If \(C_i \) denotes an \(F_i \)-cycle of \(G_i \), then \(C_i \) contains \(w_i \) and also the vertices \(u \) and \(v \). Hence, \(C_i - w_i \) is a \(u \)-\(v \)-path of \(G_i \) and also of \(G \). By connecting the \(u \)-\(v \)-paths \(C_1 - w_1 \) and \(C_2 - w_2 \) we obtain an \(F \)-cycle \(\tilde{C} \) in \(G \). If \(C_i \) for \(i = 1 \) or \(2 \) would not be hamiltonian in \(G_i \), then \(\tilde{C} \) could not be hamiltonian in \(G \).
This contradicts the fact that F is an H-force set of G and implies that F_i is an H-force set of G_i. Hence,

$$h(G) = |F| = (|F_1| - 1) + (|F_2| - 1) \geq (h(G_1) - 1) + (h(G_2) - 1) = h(G_1) + h(G_2) - 2$$

which proves the statement of Theorem 7.

If, for example, G_t denotes the hamiltonian graph which consists of a “chain” of $t \geq 1$ cube graphs (see Figure 2) then by induction and using Theorem 7 we obtain for the H-force-number $h(G_t) = 2t + 2$.

Next, we will give a characterization of hamiltonian graphs G such that $S(G)$ is an H-force set of G and, consequently, $h(G) = s(G)$. To this end, let us consider the concept of cycle extendable graphs (which was first investigated by Hendry in [5]) and weaken it in a suitable sense.

A cycle C of a graph G is called extendable if G contains a $V(C)$-cycle C' which has exactly one vertex more than C. A graph G is called cycle extendable if G contains a cycle and if every non-hamiltonian cycle is extendable. Cycle extendable graphs are obviously hamiltonian ones.

In [5], Hendry raised the problem whether every hamiltonian chordal graph is cycle extendable or not. Jiang proved in [6] that every planar hamiltonian chordal graph is also cycle extendable. Moreover, a hamiltonian graph which is an interval graph or a split graph has been proved to be cycle extendable, see [1] and also [2].

Now, we call a non-hamiltonian cycle C of a graph G weakly extendable if G contains a $V(C)$-cycle of length $n - 1$. And, a graph G is called weakly cycle extendable if G is hamiltonian and if every non-hamiltonian cycle is weakly extendable. Trivially, every cycle extendable graph is weakly cycle extendable. Every outerplanar graph which belongs to \mathcal{H} is also weakly cycle extendable.

Theorem 8. Let $G \in \mathcal{H}$. Then, the following conditions are equivalent.

(i) $S(G)$ is an H-force set, i.e., $h(G) = s(G)$.

(ii) G is weakly cycle extendable.
Proof. Suppose that $S = S(G)$ is an H-force set and that G contains a cycle C which is not weakly extendable. Then, $G - x$ is not hamiltonian for each $x \in V(G) \setminus V(C)$ which implies $x \notin S$. Hence, C is an S-cycle which contradicts our claim that S is an H-force set. Thus, G is weakly cycle extendable.

Now, let G be weakly cycle extendable and suppose that S is not an H-force set. If S is empty then $G - x$ is not hamiltonian for each $x \in V(G)$. Since G is not a cycle, there exists a cycle C in G of length at most $n - 2$, and C is not weakly extendable, a contradiction. So, suppose that S is not empty and let C be a non-hamiltonian S-cycle of G. Then, C is weakly extendable, i.e., G has a $V(C)$-cycle C' of length $n - 1$. Suppose C' does not contain a vertex $x \in V(G)$. Then $G - x$ is hamiltonian and, consequently, $x \in S$. That together with $x \in V(G) \setminus V(C') \subseteq V(G) \setminus V(C) \subseteq V(G) \setminus S$ yields a contradiction which proves that S is an H-force set.

Hence, every weakly cycle extendable graph $G \in \mathcal{H}$ has a uniquely determined smallest H-force set. In Figure 3, a not weakly cycle extendable graph with a unique smallest H-force set (the two black vertices) is presented.

![Figure 3](image.png)

Theorem 9. Let $G \in \mathcal{H}$.

(i) If $s(G) \geq n - 1$, then G is weakly cycle extendable.

(ii) If $s(G) \leq 1$, then G is not weakly cycle extendable.

Proof. (i) If $s(G) = n$ then G is 1-hamiltonian which implies that every non-hamiltonian cycle of G is weakly extendable. If $s(G) = n - 1$ then every S-cycle is hamiltonian. For every other non-hamiltonian cycle C of G, there is an $x \in S$ which is not contained in C. Since $G - x$ is hamiltonian, C is a cycle of $G - x$ and, consequently, weakly extendable in G.

(ii) If $s(G) = 0$ then G has no cycle of length $n - 1$, i.e., every non-hamiltonian cycle is not weakly extendable. If $s(G) = 1$ then, obviously, G has at least five vertices. Let be $S = \{x\}$ and let C be a hamiltonian cycle of $G - x$. Moreover, let y and z be two neighbors of x. Then, C passes y and z and consists of two y-z-paths P_1 and P_2 with no common inner vertex. At least one of these paths has more than one inner vertex. Otherwise, because of $n \geq 5$, each of P_1 and
P_2 would have exactly one inner vertex which implies $s(G) > 1$, a contradiction. Suppose, now, that P_1 has at least two inner vertices. Then, $V(P_2) \cup \{x\}$ is the vertex set of a cycle C' of length at most $n - 2$. C' cannot be weakly extendable in G because otherwise there would exist a $V(C')$-cycle of length $n - 1$ in G which is different from C. That contradicts the claim $S(G) = \{x\}$. \hfill \blacksquare

For every integer $n \geq 9$ and all k with $2 \leq k \leq n - 2$ we were able to construct a weakly cycle extendable graph of order n with H-force number k.

Now, let $\mathcal{F} = \mathcal{F}(G)$ for a given graph $G \in \mathcal{H}$ denote the family of all H-force sets of G. As is easily seen, $\mathcal{F} = \{X \subseteq V \mid X \notin \mathcal{F}\}$ is an independence system on V which means that \mathcal{F} satisfies the following two properties.

1. $\emptyset \in \mathcal{F}$.
2. $X \in \mathcal{F}, Y \subseteq X$ implies $Y \in \mathcal{F}$.

In general, the independence system (V, \mathcal{F}) is not also a matroid which means that the property

3. If $X, Y \in \mathcal{F}$ and $|X| = |Y| + 1$, then there exists an $x \in X \setminus Y$ such that $Y \cup \{x\} \in \mathcal{F}$.

is not satisfied for every graph $G \in \mathcal{H}$ (see, also [8]). Consider the hamiltonian graph G with vertex set $V = \{1, 2, \ldots, 7\}$ which consists of the cycle $(1, 2, \ldots, 7)$ and the chords 14 and 36. For G we have $\{1, 2, 3, 4\} \in \mathcal{F}$ and $\{1, 2, 3, 6, 7\} \in \mathcal{F}$ but, property (M3) is not satisfied for these two sets.

Theorem 10. If G is a weakly cycle extendable graph, then (V, \mathcal{F}) is a matroid.

Proof. Let $X, Y \in \mathcal{F}$ be two sets where $|X| = |Y| + 1$. As G is weakly cycle extendable, G contains a Y-cycle C of length $n - 1$. Let $v \in V$ be the only vertex which does not belong to C. Hence, $X \setminus \{v\}$ is a subset of $V(C)$. If there is a vertex $x \in X \setminus \{v\}$ with $x \notin Y$, then we have $Y \cup \{x\} \in \mathcal{F}$ and, consequently, $Y \setminus \{x\} \in \mathcal{F}$. Otherwise, we have $Y = X \setminus \{v\}$. That yields $Y \cup \{v\} = X \in \mathcal{F}$ and proves the property (M3). \hfill \blacksquare

The maximal independent sets of the matroid (V, \mathcal{F}), which are the members of \mathcal{F} of maximal cardinality, are just the vertex sets of the cycles of length $n - 1$ of G.

If $\mathcal{C} = \mathcal{C}(G)$ denotes the set of all cycles in G which are not weakly extendable, then let $(\mathcal{C}_1, \mathcal{C}_2, \ldots, \mathcal{C}_m)$ denote a partition of \mathcal{C}, i.e., \mathcal{C} is the union of $m \geq 1$ nonempty and disjoint subsets \mathcal{C}_i of $\mathcal{C}(G)$. We call a partition $(\mathcal{C}_1, \mathcal{C}_2, \ldots, \mathcal{C}_m)$ vertex-unsaturated (for short, unsaturated) if $V(\mathcal{C}_i)$ where

$$V(\mathcal{C}_i) := \bigcup_{C \in \mathcal{C}_i} V(C)$$

is different from $V(G)$ for $i = 1, 2, \ldots, m$. Now, let $p(G)$ denote the smallest integer m for which there exists an unsaturated partition $(\mathcal{C}_1, \mathcal{C}_2, \ldots, \mathcal{C}_m)$ of $\mathcal{C}(G)$.

Theorem 11. Let $G \in \mathcal{H}$ be a graph that is not weakly cycle extendable. Then,

$$h(G) = s(G) + p(G).$$

Proof. First, let (C_1, C_2, \ldots, C_m) be an unsaturated partition of $C(G)$ such that $m = p(G)$. For $i = 1, 2, \ldots, m$ let $v_i \in V(G) \setminus V(C_i)$ be any fixed vertex. We prove that $X := S(G) \cup \{v_1, \ldots, v_m\}$ is an H-force set which implies $h(G) \leq s(G) + p(G)$. For this purpose, let C be any non-hamiltonian cycle of G.

If there exists a $V(C)$-cycle C' of length $n - 1$ in G, then $S(G)$ contains a vertex v such that $\{v\} = V(G) \setminus V(C')$. Hence, $v \notin V(C)$ and, consequently, $X \notin V(C)$. If there is no $V(C)$-cycle of length $n - 1$ in G, then G contains a $V(C)$-cycle $C'' \subseteq C(G)$. In this case there exists a partition set $C_i, 1 \leq i \leq m$, such that $C'' \subseteq C_i$. Then

$$v_i \in V(G) \setminus V(C_i) \subseteq V(G) \setminus V(C'') \subseteq V(G) \setminus V(C)$$

implies $X \notin V(C)$. Thus, every X-cycle is hamiltonian and X is an H-force set.

Assume now that there exists an H-force set X of G with less than $s(G) + p(G)$ vertices. Since, by Theorem 8, $S(G)$ is not an H-force set, there exists a nonempty subset $Y \subseteq V(G) \setminus S(G)$ such that $X = S(G) \cup Y$. Because of the assumption we have $|Y| < p(G)$. Note that every cycle $C \subseteq C(G)$ is an $S(G)$-cycle because otherwise there would exist an $x \in S(G) \setminus V(C)$ such that $V(G) \setminus \{x\}$ is the vertex set of a cycle C' of length $n - 1$ in G with $V(C) \subseteq V(C')$, a contradiction with respect to $C \in C(G)$. Since, moreover, every X-cycle is hamiltonian, we have that for every $C \in C(G)$ there exists a vertex $y \in Y$ such that $y \notin V(C)$.

For every $y \in Y$, let us define $D_y = \{C \in C(G) \mid y \notin V(C)\}$. Then, we have

$$C(G) = \bigcup_{y \in Y} D_y$$

and, because of $C(G) \neq \emptyset$, there exists a vertex $y_1 \in Y$ such that $D_{y_1} \neq \emptyset$.

Now, we are able to construct an unsaturated partition of $C(G)$. To this end, let $C_1 := D_{y_1}$ and $Y_1 := Y \setminus \{y_1\}$. We may assume that the partition sets C_1, \ldots, C_k with $k \geq 1$ are already constructed. If Y_k contains a vertex y_{k+1} such that the set

$$D_{y_{k+1}} \setminus \bigcup_{i=1}^{k} C_i$$

is not empty, then let

$$C_{k+1} := D_{y_{k+1}} \setminus \bigcup_{i=1}^{k} C_i.$$

This procedure terminates after at most $|Y| - 1$ steps and yields an unsaturated partition (C_1, \ldots, C_m) with $m < p(G)$ which contradicts the definition of $p(G).$
As an immediate consequence of Theorem 11 we have

Corollary 12. Let $G \in \mathcal{H}$ be a not weakly cycle extendable graph. Then, the following conditions are equivalent.

1. $h(G) = s(G) + 1$,
2. $(C(G))$ is unsaturated.

References

Received 27 July 2015
Revised 23 February 2016
Accepted 23 February 2016