DECOMPOSABILITY OF ABSTRACT
AND PATH-INDUCED CONVEXITIES
IN HYPERGRAPHS

FRANCESCO MARIO MALVESTUTO

AND

MARINA MOSCARINI

Department of Informatics
Sapienza University of Rome
Via Salaria 113, 00198 Roma, Italy

e-mail: malvestuto@di.uniroma1.it
moscarini@di.uniroma1.it

Abstract

An abstract convexity space on a connected hypergraph H with vertex set $V(H)$ is a family C of subsets of $V(H)$ (to be called the convex sets of H) such that: (i) C contains the empty set and $V(H)$, (ii) C is closed under intersection, and (iii) every set in C is connected in H. A convex set X of H is a minimal vertex convex separator of H if there exist two vertices of H that are separated by X and are not separated by any convex set that is a proper subset of X. A nonempty subset X of $V(H)$ is a cluster of H if in H every two vertices in X are not separated by any convex set. The cluster hypergraph of H is the hypergraph with vertex set $V(H)$ whose edges are the maximal clusters of H. A convexity space on H is called decomposable if it satisfies the following three properties:

(C1) the cluster hypergraph of H is acyclic,
(C2) every edge of the cluster hypergraph of H is convex,
(C3) for every nonempty proper subset X of $V(H)$, a vertex v does not belong to the convex hull of X if and only if v is separated from X in H by a convex cluster.

It is known that the monophonic convexity (i.e., the convexity induced by the set of chordless paths) on a connected hypergraph is decomposable.

In this paper we first provide two characterizations of decomposable convexities and then, after introducing the notion of a hereditary path family in a connected hypergraph H, we show that the convexity space on H induced
by any hereditary path family containing all chordless paths (such as the families of simple paths and of all paths) is decomposable.

Keywords: convex hull, hypergraph convexity, path-induced convexity, convex geometry.

2010 Mathematics Subject Classification: Primary: 05C65, 52A01; Secondary: 52B55.

References

doi:10.5402/2011/806193

doi:10.1016/0012-365X(85)90051-2

doi:10.1016/0020-0190(81)90072-7

Received 20 January 2014
Revised 7 October 2014
Accepted 23 October 2014