ON A SPANNING k-TREE IN WHICH SPECIFIED VERTICES HAVE DEGREE LESS THAN k

Hajime Matsumura

College of Education
Ibaraki University
Ibaraki 310-8512, Japan

e-mail: hajime-m@mx.ibaraki.ac.jp

Abstract

A k-tree is a tree with maximum degree at most k. In this paper, we give a degree sum condition for a graph to have a spanning k-tree in which specified vertices have degree less than k. We denote by $\sigma_k(G)$ the minimum value of the degree sum of k independent vertices in a graph G. Let $k \geq 3$ and $s \geq 0$ be integers, and suppose G is a connected graph and $\sigma_k(G) \geq |V(G)| + s - 1$. Then for any s specified vertices, G contains a spanning k-tree in which every specified vertex has degree less than k. The degree condition is sharp.

Keywords: spanning tree, degree bounded tree, degree sum condition.

2010 Mathematics Subject Classification: 05C05, 05C35.

1. Introduction

All graphs considered in this paper are simple and finite. Let G be a graph with the vertex set $V(G)$ and the edge set $E(G)$. For a vertex x of G, we denote by $\deg_G(x)$ the degree of x in G and by $N_G(x)$ the set of vertices adjacent to x in G. We denote $N_G[x] = N_G(x) \cup \{x\}$, and $V_i(G)$ denotes the set of vertices of G which have degree i in G. For a subset S of $V(G)$, $N_G(S) = \bigcup_{x \in S} N_G(x)$. $\alpha(G)$ denotes the independence number of G and we define

$$\sigma_k(G) = \min \left\{ \sum_{x \in S} \deg_G(x_i) : S \text{ is an independent set of } G \text{ with } |S| = k \right\}$$

for $1 \leq k \leq \alpha(G)$, and $\sigma_k(G) = \infty$ if $\alpha(G) < k$.

The following is a well-known theorem on Hamiltonian cycles and paths by Ore.
Theorem 1 (Ore [6, 7]). Let \(s \) be an integer with \(0 \leq s \leq 2 \). Suppose \(G \) is a graph with \(|V(G)| \geq 3 \) and \(\sigma_2(G) \geq |V(G)| + s - 1 \). Then the following hold:

1. if \(s = 0 \), then \(G \) has a Hamiltonian path,
2. if \(s = 1 \), then \(G \) has a Hamiltonian cycle, and
3. if \(s = 2 \), then \(G \) has a Hamiltonian path connecting any two vertices of \(G \).

We can consider a Hamiltonian path as a spanning tree with maximum degree 2.

For an integer \(k \geq 2 \), a tree \(T \) is called a \(k \)-tree if \(\deg_T(x) \leq k \) for any \(x \in V(T) \).

As we mention above, a spanning 2-tree is a Hamiltonian path.

In 1975, Win gave a degree sum condition which ensures the existence of a spanning \(k \)-tree.

Theorem 2 (Win [8]). Let \(k \geq 2 \) be an integer and \(G \) be a connected graph. If \(\sigma_k(G) \geq |V(G)| - 1 \), then \(G \) has a spanning \(k \)-tree.

Note that Theorem 2 implies Theorem 1 (1) for \(k = 2 \).

Hereafter, we consider a spanning \(k \)-tree in which every specified vertex has degree less than \(k \). Our main result is the following.

Theorem 4. Let \(k \geq 3 \) and \(s \geq 0 \) be integers, and \(G \) be a connected graph. If \(\sigma_k(G) \geq |V(G)| + s - 1 \), then for any \(s \) distinct vertices of \(G \), \(G \) has a spanning \(k \)-tree such that each specified vertex has degree less than \(k \).

We note that this is also a generalization of Theorem 2 for \(k \geq 3 \). For \(k = 2 \), we have to restrict ourselves to \(0 \leq s \leq k = 2 \) because a spanning 2-tree has just two vertices of degree one. Then we can easily derive the same conclusion by Theorem 1.

Consider a complete bipartite graph \(G \) with parts \(X \) and \(Y \) such that \(|X| = s \) and \(|Y| = (k - 2)s + 2 \) and let \(S = X \). Then \(\sigma_k(G) = |V(G)| + s - 1 \). Suppose \(G \) has a spanning \(k \)-tree \(T \) with \(\deg_T(v) < k \) for every \(v \in S \). Then \(|V(G)| - 1 = |E(T)| \leq (k - 1)s < |V(G)| - 1 \), a contradiction. Hence \(G \) has no such a tree and the degree sum condition in Theorem 4 is sharp.
An outdirected tree \tilde{T} is a rooted tree in which all the edges are directed away from the root. Let $V(\tilde{T})$ and $A(\tilde{T})$ be the vertex set and the arc set of \tilde{T}, respectively. For a subset S of $V(\tilde{T})$, we denote by $N^+_T(S)$ the set of vertices w of $V(\tilde{T})$ for which there is an arc $uw \in A(\tilde{T})$ for some $u \in S$. For a tree T and $u, v \in V(T)$, let $P_T(u, v)$ be the unique path in T connecting u and v.

2. Proof of Theorem 4

If $s = 0$, we have nothing to prove since G has a spanning k-tree by Theorem 2. So we may assume that $s \geq 1$. Let S be the set of s specified vertices.

By Theorem 2, G has a spanning k-tree. Choose a spanning k-tree T of G such that $|V_k(T) \cap S|$ is as small as possible. If $V_k(T) \cap S = \emptyset$, then T is a desired tree. Hence we may assume that $V_k(T) \cap S$ is not empty and let v be a vertex of S which have degree k in T.

Let T_1, \ldots, T_k be the connected components of $T - \{v\}$. For each $1 \leq i \leq k$, let t_i be the vertex of T_i which is adjacent to v in T and let u_i be a vertex of T_i with $\deg_T(u_i) = 1$.

If u_i and u_j are adjacent in G for some $1 \leq i < j \leq k$, then $T' = T + u_iu_j - vt_i$ is a spanning k-tree of G with $|V_k(T') \cap S| < |V_k(T) \cap S|$, a contradiction. Hence $\{u_1, \ldots, u_k\}$ is an independent set of G.

Let $W_1 = \bigcup_{i=2}^{k} N_G(u_i) \cap V(T_i)$.

Claim 1. t_1 is not contained in W_1.

Proof. If t_1 is contained in W_1, then t_1 is adjacent to u_i for some $2 \leq i \leq k$. If we take $T' = T - vt_1 + t_1u_i$, then $|V_k(T') \cap S| < |V_k(T) \cap S|$, a contradiction. □

Claim 2. For each $w \in W_1$, the following statements hold.

(1) Either $\deg_T(w) = k$, or $w \in S$ and $\deg_T(w) = k - 1$.

(2) $N_G[u_1] \cap (N_T(w) \setminus V(P_T(w, u_1))) = \emptyset$.

Proof. (1) Suppose $\deg_T(w) < k$ for some $w \in W_1$. Since w is adjacent to u_i for some $2 \leq i \leq k$, $T' = T - tu_i + u_iw$ is also a spanning k-tree with $\deg_T(w) = k - 1$. If $w \notin S$, then $|V(T') \cap S| < |V(T) \cap S|$, a contradiction. If $w \in S$ and $\deg_T(w) \leq k - 2$, then also $|V(T') \cap S| < |V(T) \cap S|$. This contradicts the choice of T.

(2) Suppose there exists $z \in N_T(w) \setminus V(P_T(w, u_1))$ which is adjacent to u_1 in G for some $w \in W_1$. Since w is adjacent to u_i in G for some $2 \leq i \leq k$, $T' = T - wz - vt_1 + u_1z + wu_i$ is a spanning k-tree with $|V_k(T') \cap S| < |V_k(T) \cap S|$, which contradicts the choice of T. □

Let $W_{1,a} = \{w \in W_1 : w \notin S\}$ and $W_{1,b} = \{w \in W_1 : w \in S\}$.

Claim 3. \(|N_T(W_1) \setminus N_G[u_1]| \geq (k - 1)|W_{1, a}| + (k - 2)|W_{1, b}|.

Proof. We may assume that \(W_1\) is not empty since otherwise the above inequality obviously holds. Furthermore, since \(t_1\) does not belong to \(W_1\) by Claim 1, \(v\) is not contained in \(N_T(W_1)\).

We consider \(T_1\) as an outdirected tree with the root \(u_1\). For any \(w_0 \in W_1\) and \(z \in N_{T_1}^+(w_0), z \notin N_G[u_1]\) holds by Claim 2 (2). This implies that \(N_{T_1}^+(w_0) \subseteq N_T(W_1) \setminus N_G[u_1]\) for every \(w_0 \in W_1\). Moreover, for any two distinct vertices \(w_1\) and \(w_2\) of \(W_1, N_{T_1}^+(w_1)\) and \(N_{T_1}^+(w_2)\) are disjoint. Consequently,

\[
|N_T(W_1) \setminus N_G[u_1]| \geq \left| \sum_{w \in W_1} N_{T_1}^+(w) \right| = (k - 1)|W_{1, a}| + (k - 2)|W_{1, b}|.
\]

\(\square\)

Claim 4. \(\sum_{i=1}^k |V(T_i) \cap N_G(u_i)| \leq |V(T_1)| - 1 + |W_{1, b}|.

Proof. By Claim 3, we obtain

\[
|V(T_1) \cap N_G(u_1)| \leq |V(T_1)| - 1 - |N_T(W_1) \setminus N_G[u_1]| \\
\leq |V(T_1)| - 1 - (k - 1)|W_{1, a}| - (k - 2)|W_{1, b}|.
\]

By the definition of \(W_1\), we have \(\sum_{i=2}^k |V(T_i) \cap N_G(u_i)| \leq (k - 1)|W_1|\). Then

\[
\sum_{i=1}^k |V(T_i) \cap N_G(u_i)| \leq |V(T_1)| - 1 + |W_{1, b}|.
\]

\(\square\)

Similarly, for each \(T_j\) we can define \(W_j, W_{j, a}, W_{j, b}\) for \(2 \leq j \leq k\). As Claim 4 we have

\[
\sum_{i=1}^k |V(T_j) \cap N_G(u_i)| \leq |V(T_j)| - 1 + |W_{j, b}|.
\]

Since \(\deg_G(u_i) \leq |\{v\}| + \sum_{j=1}^k |V(T_j) \cap N_G(u_i)|\) and \(\sum_{j=1}^k |W_{j, b}| \leq s - 1\),

\[
\sum_{i=1}^k d_G(u_i) \leq k + \sum_{i=1}^k \sum_{j=1}^k |V(T_j) \cap N_G(u_i)| \\
\leq k + \sum_{j=1}^k (|V(T_j)| - 1 + |W_{j, b}|) \\
\leq k + |V(G)| - 1 - k + s - 1 \\
= |V(G)| + s - 2,
\]

a contradiction. This completes the proof of Theorem 4.
3. Remarks

For a graph G, let f be a mapping from $V(G)$ to positive integers and let $f^{-1}(a) = \{x \in V(G) : f(x) = a\}$ for a positive integer a. We call a tree T to be a f-tree if $\deg_T(v) \leq f(v)$ for every vertex v of T. The following sufficient conditions are already known for a graph to have a spanning f-tree.

Theorem 5 (Ellingham et al. [1]). Let G be a connected graph and let f be a mapping from $V(G)$ to positive integers. If $w(G - S) \leq \sum_{x \in S} (f(x) - 2) + 2$, for all $S \subset V(G)$, then G has a spanning f-tree, where $w(G - S)$ denotes the number of components of $G - S$.

Theorem 6 (Enomoto and Ozeki [2]). Let G be an n-connected graph and f be a mapping from $V(G)$ to positive integers. Suppose $|f^{-1}(1)| + |f^{-1}(2)| \leq n + 1$ and
\[
\alpha(G) \leq \min_{R} \left\{ \sum_{x \in R} (f(x) - 1) : R \subset V(G), |R| = n \right\} + 1.
\]
Then G has a spanning f-tree.

The above theorems are generalizations of the following classical results on spanning k-trees.

Theorem 7 (Win [9]). Let $k \geq 3$ be an integer and G be a connected graph. If $w(G - S) \leq (k - 2)|S| + 2$, for all $S \subset V(G)$, then G has a spanning k-tree.

Theorem 8 (Neumann-Lara and Rivera-Campo [5]). Let $k \geq 2$ and $n \geq 2$ be integers and G be an n-connected graph. If $\alpha(G) \leq (k - 1)n + 1$, then G has a spanning k-tree.

It is natural to consider a degree sum condition for a spanning f-tree. We pose the following conjecture.

Conjecture 9. Let G be an n-connected graph, f be a mapping from $V(G)$ to positive integers and let $k = \max\{f(x) : x \in V(G)\}$. Suppose $|f^{-1}(1)| \leq n$ and
\[
\sigma_k(G) \geq |V(G)| + \sum_{x \in V(G)} (k - f(x)) + 1.
\]
Then G has a spanning f-tree.

We note that Theorems 3 and 4 partially confirm this conjecture.

Acknowledgement

The author would like to thank Professor Mikio Kano for his valuable comments. The author also would like to thank two anonymous referees for their helpful comments and suggestions.
196

H. MATSUMURA

References

Received 16 October 2013
Revised 31 January 2014
Accepted 31 January 2014