Note

THE DOMINATION NUMBER OF $K_n^3$

John Georges$^1$, Jianwei Lin$^2$

and

David Mauro$^1$

$^1$ Department of Mathematics
Trinity College
Hartford, CT USA 06106

$^2$ Department of Mathematics
Western Michigan Univ.
Kalamazoo, MI USA 49008

e-mail: jianwei.lin@wmich.edu
john.georges@trincoll.edu
david.mauro@trincoll.edu

Abstract

Let $K_n^3$ denote the Cartesian product $K_n \square K_n \square K_n$, where $K_n$ is the complete graph on $n$ vertices. We show that the domination number of $K_n^3$ is $\lceil n^2/2 \rceil$.

Keywords: Cartesian product, dominating set, domination number.

2010 Mathematics Subject Classification: 05C69, 05C76.

1. Introduction

Let $G_1$ and $G_2$ be two graphs. Per the notation of West [14], the Cartesian product of $G_1$ and $G_2$ is the graph $G_1 \square G_2$ with vertex set $V(G_1 \square G_2) = V(G_1) \times V(G_2)$ and edge set containing $((x_1, y_1), (x_2, y_2))$ if and only if either $x_1 = x_2$ and $y_1$ is adjacent to $y_2$, or $y_1 = y_2$ and $x_1$ is adjacent to $x_2$. To isomorphism, Cartesian product is a binary operator that is both commutative and associative.

Let $G$ be a graph. Then a dominating set of $G$ is a subset $D$ of $V(G)$ such that for every vertex $v$ in $V(G)$, $v$ is equal or adjacent to some vertex in $D$. The domination number of $G$, denoted $\gamma(G)$, is the cardinality of the smallest
dominating set of $G$. (See the text of Haynes et al. [7] for further study of domination.)

Denoting $K_n \Box K_n \Box K_n$ by $K_n^3$, we show $\gamma(K_n^3) = \left\lceil \frac{n^2}{2} \right\rceil$.

Research on the domination number of Cartesian products of graphs has been driven in large part by the open conjecture of Vizing [12, 13] that posits the domination number of a Cartesian product to be bounded from below by the product of the domination numbers of the factors. Products of graphs in special classes have received particular attention. Following the work of Jacobson and Kinch [8] and Chang [1, 2] on products of paths, Gonçalves et al. [5] have determined $\lambda(P_n \Box P_m)$ for arbitrarily large $m$ and $n$. Considering the Cartesian product of cycles, Klavžar and Seifter [9] determined $\gamma(C_k \Box C_n)$ for $k = 3, 4$ and 5. El-Zahar and Shaheen [3, 4, 11] have subsequently obtained results for additional $k, n$. The hypercube $Q_n$, too, has been studied. In [10], Pai and Chiu [6] reviewed existing results in [6] on $\gamma(Q_n)$ for the purpose of analysing the power domination number of $Q_n$, a variant of $\gamma(Q_n)$.

We point out that because the Hamming graph $H(d, n)$ is isomorphic to the Cartesian product of $d$ copies of $K_n$, we herein establish $\gamma(H(d, n))$. The domination numbers of $H(1, n)$ and $H(2, n)$ are well known.

2. Proof

Since the claim is clearly true for $n = 1$, we henceforth assume $n \geq 2$. The vertices of $K_n^3$ shall be denoted in the usual way as lattice points $(x, y, z)$ in 3-space, $1 \leq x, y, z \leq n$, where $x, y$ and $z$ specify a row, column, and level, respectively. For a given subset $S$ of $V(K_n^3)$, the cross-section of $S$ at row $x$ (resp. column $y$, level $z$) shall refer to the set of vertices in $S$ that are in row $x$ (resp. column $y$, level $z$). For a dominating set $D$ of $K_n^3$, $m_D$ will denote the smallest integer $i$ such that some cross-section of $K_n^3$ contains precisely $i$ vertices in $D$.

Our strategy is outlined as follows:

1. We show that there exists a dominating set of $K_n^3$ of cardinality $\left\lfloor \frac{n}{2} \right\rfloor^2 + (n - \left\lfloor \frac{n}{2} \right\rfloor)^2$;

2. We show that if $D$ is a dominating set of $K_n^3$ of minimum cardinality $\gamma(K_n^3)$, then $m_D \leq \left\lfloor \frac{n}{2} \right\rfloor$ and $\gamma(K_n^3) \geq m_D^2 + (n - m_D)^2$;

3. We observe that the quadratic $f(x) = x^2 + (n - x)^2$ on the non-negative integers is minimized at $x = \left\lfloor \frac{n}{2} \right\rfloor$, implying by (1) and (2) that $m_D = \left\lfloor \frac{n}{2} \right\rfloor$ and hence $\gamma(K_n^3) = \left\lfloor \frac{n}{2} \right\rfloor^2 + (n - \left\lfloor \frac{n}{2} \right\rfloor)^2 = \left\lceil \frac{n^2}{2} \right\rceil$.

To show (1), we let $n_*$ denote $\left\lfloor \frac{n}{2} \right\rfloor$ for notational convenience and we form a partition of $V(K_n^3)$ consisting of the following eight sets:
A_1 = \{ (x, y, z) \mid 1 \leq x, y, z \leq n_s \},
A_2 = \{ (x, y, z) \mid 1 \leq x, y \leq n_s \text{ and } n_s + 1 \leq z \leq n \},
A_3 = \{ (x, y, z) \mid n_s + 1 \leq x \leq n \text{ and } 1 \leq y, z \leq n_s \},
A_4 = \{ (x, y, z) \mid n_s + 1 \leq y \leq n \text{ and } 1 \leq x, z \leq n_s \},
B_1 = \{ (x, y, z) \mid n_s + 1 \leq x, y, z \leq n \},
B_2 = \{ (x, y, z) \mid n_s + 1 \leq x, y \leq n \text{ and } 1 \leq z \leq n_s \},
B_3 = \{ (x, y, z) \mid 1 \leq x \leq n_s \text{ and } n_s + 1 \leq y, z \leq n \},
B_4 = \{ (x, y, z) \mid 1 \leq y \leq n_s \text{ and } n_s + 1 \leq x, z \leq n \}.

We observe that there exists a subset A_1 of A_i of cardinality n_s^2 such that every vertex in \bigcup_{i=1}^4 A_i shares a row, column, or level with some vertex in S_A_i. (Form an n_s \times n_s Latin square in which the cell entries are taken from \{1, 2, \ldots, n_s\}. Let S_{A_i} contain (x, y, z) if and only if the entry at row x and column y of the Latin square is z.) Similarly, there exists a subset B_1 of B_i of cardinality (n - n_s)^2 such that every vertex in \bigcup_{i=1}^4 B_i shares a row, column, or level with some vertex in S_B_i. This implies that S_A_1 \cup S_B_1 is a dominating set of K_3^n. Since S_A_1 and S_B_1 are disjoint, there exists a dominating set of K_3^n of cardinality

\( n_s^2 + (n - n_s)^2 = \left\lceil \frac{n^2}{2} \right\rceil \).

We now show (2). Let D denote a dominating set of K_3^n of minimum cardinality \( \gamma(K_3^n) \). Since \( \gamma(K_3^n) \leq \left\lceil \frac{n^2}{2} \right\rceil \) by (1), we obtain \( nm_D \leq \left\lceil \frac{n^2}{2} \right\rceil \), implying \( m_D \leq \left\lceil \frac{n}{2} \right\rceil \).

With no loss of generality, we assume that the cross-section of V(K_3^n) at level z = 1 contains precisely m_D vertices of D, and we denote the set of vertices in D that are on level 1 by D_1. Let c_1 denote the number of columns at level 1 that contain no vertex in D_1 and let r_1 denote the number of rows at level 1 that contain no vertex in D_1. Since c_1 \geq n - m_D and r_1 \geq n - m_D, we may find a set R_1 of n - m_D rows at level 1 and a set C_1 of n - m_D columns at level 1 that contain no vertices in D_1. Accordingly, at the intersections of these rows and columns we find (n - m_D)^2 vertices at level 1 that are not adjacent to any vertex in D_1. Denoting the set of those vertices by S, it follows that each vertex (x, y, 1) in S is adjacent to some vertex (x, y, z) in D where z \geq 2. Therefore D contains (n - m_D)^2 distinct vertices (the set of which we denote by S_1) that are particularly adjacent to the (n - m_D)^2 vertices in S. Moreover, there exist m_D rows on level 1, none of which is in R_1. Hence the set S_2 of vertices in D that are in the cross-section at one of these rows does not intersect S_1. Since each of these m_D cross-sections contains at least m_D elements of D, we have that D contains at least m_D^2 + (n - m_D)^2 vertices, thus establishing (2).

Acknowledgements

The authors thank the referees for their helpful and constructive comments.
References


Received 9 July 2012
Revised 29 December 2012
Accepted 29 December 2012