A NOTE ON PM-COMPACT BIPARTITE GRAPHS

JINFENG LIU

Center for Combinatorics and LPMC-TJKLC
Nankai University, Tianjin 300071, China

AND

XIUMEI WANG

Department of Mathematics, Zhengzhou University
Zhengzhou 450001, China

e-mail: wangxiumei@zzu.edu.cn

Abstract

A graph is called perfect matching compact (briefly, PM-compact), if its perfect matching graph is complete. Matching-covered PM-compact bipartite graphs have been characterized. In this paper, we show that any PM-compact bipartite graph G with $\delta(G) \geq 2$ has an ear decomposition such that each graph in the decomposition sequence is also PM-compact, which implies that G is matching-covered.

Keywords: perfect matching, PM-compact graph, matching-covered graph.

2010 Mathematics Subject Classification: 05C70.

1. Introduction

In this paper, graphs under consideration are loopless, undirected, finite and connected. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. A subset M of $E(G)$ is called a perfect matching of G if no two edges in M are adjacent and M covers all vertices of G. The perfect matching graph of G, denoted by $PM(G)$, is the graph in which each perfect matching of G is a vertex and two vertices M_1 and M_2 are adjacent in $PM(G)$ if and only if the symmetric difference of M_1 and

\footnote{This work is supported by NSFC (grant no. 11101383, 11201121, and 11201432).}
*M*₂ is an alternating cycle. The perfect matching polytope of *G* is the convex hull of the incidence vectors of all perfect matchings of *G*. Chvátal [4] shows that two vertices of the perfect matching polytope are adjacent if and only if the symmetric difference of the two perfect matchings is a cycle. This implies that *PM*(*G*) is the 1-skeleton graph of the perfect matching polytope of *G*. Naddef and Pulleyblank [5] show that if *PM*(*G*) is bipartite then *PM*(*G*) is a hypercube and otherwise *PM*(*G*) is Hamilton-connected. Bian and Zhang [1] give a sharp upper bound of the number of edges for the graphs whose perfect matching graphs are bipartite.

Padberg and Rao [6] show that, for *n* ≥ 4, the diameter of *PM*(*K₂ⁿ*) is 2 and, for *n* ∈ {2, 3}, the diameter of *PM*(*K₂ⁿ*) is 1.

Let *G* be a graph which has perfect matchings. If *PM*(*G*) is a complete graph, i.e., the diameter of the 1-skeleton graph of the perfect matching polytope of *G* is 1, we call *G* perfect matching compact, or *PM*-compact for short. Clearly, *K*₄ and *K*₆ are *PM*-compact. Let *v* be a vertex of degree 2 of *G* which has two distinct neighbors. The bicontraction of *v* is the graph obtained from *G* by contracting both edges incident with *v*. The retract of *G* is the graph obtained from *G* by successively bicontracting vertices of degree 2 until either there are no vertices of degree 2 or at most two vertices remain. A graph with two vertices and at least two parallel edges is denoted by *K*₂⁺. A graph is matching-covered if every edge of it appears in a perfect matching. Let δ(*G*) denote the minimum degree of *G*. For bipartite graphs, the following result is obtained in [7].

Theorem 1. (i) Let *G* be a matching-covered bipartite graph. Then *G* is *PM*-compact if and only if the retract of *G* is *K*₃,₃ or *K*₂⁺.

(ii) The graph *K*₃,₃ is the only simple matching-covered *PM*-compact bipartite graph *G* with δ(*G*) ≥ 3.

Let *H* be a subgraph of a graph *G*. An ear of *G* with respect to *H* is a path of odd length in *G* which has both ends, but no edges or interior vertices, in *H*. We call an ear trivial if it is an edge. An ear decomposition of a bipartite graph *G* is a sequence of subgraphs (*G*₀, *G*₁, . . . , *G*ᵣ), where *G*₀ = *K*₂, *G*₁ = *G*, and for 1 ≤ *i* ≤ *r*, *G*ᵢ is the union of *G*ᵢ₋₁ and an ear *P*ᵢ of *G*ᵢ with respect to *G*ᵢ₋₁. Clearly, *G*₁ is an even cycle and *G* = *K*₂ + *P*₁ + ⋯ + *P*ᵣ. In [3] Theorem 4.1.1 and Theorem 4.1.6 imply the following.

Theorem 2. A bipartite graph *G* is matching-covered if and only if *G* has an ear decomposition.

This theorem implies that for an ear decomposition of a matching-covered bipartite graph, each member of the sequence is matching-covered. If *G* is a matching-covered graph, then *G* is 2-connected, and so has minimum degree at least 2. In this paper, we show that a *PM*-compact bipartite graph *G* with δ(*G*) ≥ 2 has an
A Note on \(PM\)-compact Bipartite Graphs

ear decomposition such that each member of the decomposition sequence is \(PM\)-compact, which implies that \(G\) is matching-covered. Thus the characterization of \(PM\)-compact bipartite graphs is complete. (Note that each pendant edge (of which one end has degree 1) of a graph is contained in all perfect matchings. Using the obtained results, it is easy to characterize \(PM\)-compact bipartite graphs with minimum degree one.)

2. Main Result

A vertex \(v\) of a graph \(G\) is said to be pendant if its degree is 1 in \(G\). A bipartite graph \(G\) with bipartition \((X, Y)\) is denoted by \(G[X, Y]\). The following lemma is an immediate consequence of Exercise 16.1.13 in [2].

Lemma 3. Let \(G[X, Y]\) be a bipartite graph. Then \(G\) has a unique perfect matching if and only if

(i) each of \(X\) and \(Y\) contains a pendant vertex, and

(ii) when the pendant vertices and their neighbors are deleted, the resulting graph (if nonempty) has a unique perfect matching.

Lemma 4. Let \(G\) be a \(PM\)-compact graph and \(H\) a subgraph of \(G\) which has a perfect matching. If either (i) \(H\) is a spanning subgraph of \(G\) or (ii) \(G - V(H)\) has a perfect matching, then \(H\) is \(PM\)-compact.

Proof. If (i) holds, the assertion follows directly from the definition of \(PM\)-compact graphs.

If (ii) holds, let \(M\) be a perfect matching of \(G - V(H)\). Suppose that \(M_1'\) and \(M_2'\) are two distinct perfect matchings of \(H\). Then \(M_1 = M_1' \cup M\) and \(M_2 = M_2' \cup M\) are two perfect matchings of \(G\). Since \(G\) is \(PM\)-compact, \(M_1 \Delta M_2\) is an alternating cycle of \(G\). So \(M_1' \Delta M_2 = M_1 \Delta M_2\) is an alternating cycle of \(H\), and hence \(H\) is \(PM\)-compact.

Theorem 5. Let \(G\) be a \(PM\)-compact bipartite graph with \(\delta(G) \geq 2\). Then \(G\) has an ear decomposition \((G_0, G_1, \ldots, G_r)\) such that each \(G_i\), \(1 \leq i \leq r\), is \(PM\)-compact.

Proof. Suppose that \(H\) is a subgraph of \(G\) such that \(G - V(H)\) has a unique perfect matching \(M^*\). If a nontrivial ear \(P\) of \(G\) with respect to \(H\) is an \(M^*\)-alternating path, then we call \(P\) a normal ear.

Claim. The graph \(G\) has a normal ear with respect to \(H\).

Proof. To show this, write \(G^* = G - V(H)\). Let \(P^*\) be a longest \(M^*\)-alternating path in \(G^*\). Let \(x\) and \(y\) be the two ends of \(P^*\). We assert that both \(x\) and \(y\)
are covered by \(M^* \cap E(P^*) \) and each have a unique neighbor in \(G^* \), that is, their other neighbors are all in \(H \). We show this by way of contradiction. If \(x \) is not covered by \(M^* \cap E(P^*) \), let \(y' \) be the vertex matched to \(x \) under \(M^* \) (clearly, \(y' \in V(G^*) \)); otherwise, let \(y' \) be an arbitrary neighbor of \(x \) in \(G^* - E(P^*) \). When \(y' \notin V(P^*) \), \(P^* + xy' \) is an \(M^* \)-alternating path which is longer than \(P^* \). But this contradicts the choice of \(P^* \). When \(y' \in V(P^*) \), let \(C^* \) be the union of the edge \(xy' \) and the segment of \(P^* \) from \(x \) to \(y' \). Since \(G \) is bipartite, \(C^* \) is an even cycle which is an \(M^* \)-alternating cycle. Hence \(M^* \triangle E(C^*) \) is another perfect matching of \(G^* \), which contradicts the uniqueness of \(M^* \). Therefore \(x \) is covered by \(M^* \cap E(P^*) \) and has only one neighbor in \(G^* \) (namely, a member of \(V(P^*) \)). By symmetry, \(y \) also has these properties. The assertion follows.

Since \(\delta(G) \geq 2 \), by the above assertion, \(x \) and \(y \) have neighbors in \(H \). Let \(x_1, y_1 \in V(H) \) be two neighbors of \(x \) and \(y \), respectively. The above assertion also implies that the length of \(P^* \) is odd. Since \(G \) is bipartite, we have \(x_1 \neq y_1 \). Write \(P = P^* + xy_1 + yx_1 \). By the above assertion again, \(P \) is an \(M^* \)-alternating path with odd length. So \(P \) is a normal ear of \(G \) with respect to \(H \). The claim follows.

We now proceed inductively to get an ear decomposition of \(G \). For an even cycle \(C \) of \(G \), if \(G - V(C) \) has a perfect matching, we call \(C \) a \(PM \)-alternating cycle.

Recall \(\delta(G) \geq 2 \). By Lemma 3, \(G \) has at least two perfect matchings. Since each cycle in the symmetric difference of any two perfect matchings of \(G \) is a \(PM \)-alternating cycle of \(G \), \(G \) has \(PM \)-alternating cycles. Let \(C \) be a \(PM \)-alternating cycle of \(G \), and set \(H_1 = C \). If \(G - V(H_1) \) has two perfect matchings \(M^*_1 \) and \(M^*_2 \), let \(E_1 \) and \(E_2 \) be the two disjoint perfect matchings in \(H_1 \). Then \(M_1 = M^*_1 \cup E_1 \) and \(M_2 = M^*_2 \cup E_2 \) are two perfect matchings of \(G \). Since \(M_1 \triangle M_2 \) contains at least two alternating cycles, namely, \(C \) and an alternating cycle in \(M^*_1 \triangle M^*_2 \), \(M_1 \) and \(M_2 \) are not adjacent in \(PM(G) \). This contradicts the assumption that \(G \) is \(PM \)-compact. So either \(G - V(H_1) \) has a unique perfect matching, say \(M' \), or \(G - V(H_1) \) is null.

For the former case, by the above claim, \(G \) has a normal ear \(P_2 \) with respect to \(H_1 \). Set \(H_2 = H_1 + P_2 \). If \(H_2 \) is not spanning, then \(M' \setminus E(P_2) \) is the unique perfect matching of \(G - V(H_2) \). So we can proceed to find a normal ear \(P_3 \) of \(G \) with respect to \(H_2 \). Continue in this way until \(H_k = H_{k-1} + P_k, k \geq 1 \), is a spanning subgraph of \(G \). Write \(E' = E(G) \setminus E(H_k) \). Then each edge in \(E' \) is a trivial ear of \(G \) with respect to \(H_k \). Write \(r = k + |E'| \). Then we get an ear decomposition \((H_1, H_2, \ldots, H_k, \ldots, H_r)\) of \(G \), where \(H_k = H_{k-1} + P_i \) such that \(P_i \) is a normal ear of \(H_i \) with respect to \(H_{i-1} \) for each \(2 \leq i \leq k \) and a trivial ear (an edge in \(E' \)) of \(H_i \) with respect to \(H_{i-1} \) for each \(k + 1 \leq i \leq r \).

For the latter case, \(H_1 \) is a spanning subgraph of \(G \). Then each edge in \(E' = E(G) \setminus E(H_1) \) is a trivial ear of \(G \) with respect to \(C \). Since \(G = H_1 + E' \), we are done.
Let \((G_0, G_1, \ldots, G_r)\) be an arbitrary ear decomposition of \(G\). Recall that \(G_0\) is \(K_2\) and \(G_1\) is an even cycle. To complete the proof, we show that for each \(1 \leq i \leq r-1\), \(G_i\) is \(PM\)-compact. Note that \(G - V(G_i)\) either is null or has a perfect matching (which is unique). Thus either \(G_i\) is a spanning subgraph of \(G\) or \(G - V(G_i)\) has a unique perfect matching. Since \(G_i\) also has a perfect matching, by Lemma 4, \(G_i\) is \(PM\)-compact.

Note that in the proof of Theorem 5, we show a stronger assertion that for each ear decomposition of a \(PM\)-compact bipartite graph \(G\) with \(\delta(G) \geq 2\), each member in the decomposition sequence is \(PM\)-compact.

By Theorem 2 and Theorem 5, we get the following.

Corollary 6. Any \(PM\)-compact bipartite graph \(G\) with \(\delta(G) \geq 2\) is matching-covered.

Acknowledgement

The authors are grateful to referee for his/her helpful comments which have improved the presentation of this paper.

References

Received 19 July 2012
Revised 22 October 2012
Accepted 22 October 2012