BINOMIAL ARMA COUNT SERIES FROM RENEWAL PROCESSES

SERGIY KOSHKIN

Computer and Mathematical Sciences Department
University of Houston Downtown
Houston, TX 77002, USA
e-mail: koshkins@uhd.edu

AND

YUNWEI CUI

Computer and Mathematical Sciences Department
University of Houston Downtown
Houston, TX 77002, USA
e-mail: cuiy@uhd.edu

Abstract

This paper describes a new method for generating stationary integer-valued time series from renewal processes. We prove that if the lifetime distribution of renewal processes is nonlattice and the probability generating function is rational, then the generated time series satisfy causal and invertible ARMA type stochastic difference equations. The result provides an easy method for generating integer-valued time series with ARMA type autocovariance functions. Examples of generating binomial ARMA\(p, p-1\) series from lifetime distributions with constant hazard rates after lag \(p\) are given as an illustration.

Keywords: integer-valued time series, stochastic difference equations, autoregressive moving average, renewal process, lifetime distribution, probability generating function, palindromic polynomial, constant hazard rate.

2010 Mathematics Subject Classification: 37M10, 62M10, 12D10, 12D05.
References

doi:10.1007/978-1-4419-0320-4


doi:10.1080/02331880212859

doi:10.1093/biomet/asp057

doi:10.1016/j.spl.2010.09.003


doi:10.1093/biomet/asp029


Received 4 June 2011