NOTE ON THE CORE MATRIX PARTIAL ORDERING

JACEK MIELNICZUK

Department of Applied Mathematics and Computer Science
University of Life Sciences in Lublin
Akademicka 13, 20–950 Lublin, Poland

e-mail: jacek.mielniczuk@up.lublin.pl

Abstract

Complementing the work of Baksalary and Trenkler [2], we announce some results characterizing the core matrix partial ordering.

Keywords and phrases: core inverse, core partial ordering, generalized inverse, group inverse, left star partial ordering, minus partial ordering, Moore-Penrose inverse, right sharp partial ordering.

2010 Mathematics Subject Classification: 15A09, 15A45.

1. Preliminaries

Let $\mathbb{C}^{m \times n}$ be the set of $m \times n$ matrices with complex entries. We will denote the conjugate transpose, range (column space), and nullspace of $A \in \mathbb{C}^{m \times n}$ by A^*, $R(A)$, and $N(A)$, respectively. P_A will stand for the orthogonal projector on $R(A)$. We use I to denote an identity matrix with dimensions following from the context.

We start by stating several basic facts on generalized inverses. As references, one can consult [4, Sections 2.2–2.5] or [5, Sections 4.2–4.5].

We let A^{-} designate a generalized inverse of A, this being defined as a solution to the matrix equation $AXA = A$. A least squares generalized inverse of $A \in \mathbb{C}^{m \times n}$, written as A^{-}_L, is defined to be a solution to the matrix equation $AX = P_A$ ([4, Theorem 2.5.14]). The collection of all A^{-}_L is denoted by $\{A^{-}_L\}$. In light of Theorems 2.5.24 (ii) and 2.5.27 in [4], the
Moore-Penrose inverse of A is the unique element A^+ of $\{ A^-_\ell \}$ with the property $R(A^+) = R(A^*)$. The general expression of A^+ can be written as $A^+ = A^+ + (I - A^+A)U$, where $U \in \mathbb{C}^{n \times m}$ is arbitrary ([4, Theorem 2.5.17]). We will use the following simple fact ([4, Theorem 2.5.28 (iv)]): $A^+ = (A^*A)^+A^*$.

We shall mostly be concerned with core matrices. Recall that a square matrix A is said to be core if $R(A)$ and $N(A)$ are complementary subspaces, which is equivalent to saying that $R(A) = R(A^2)$. Given a core matrix A, we let Q_A represent the projector which projects a vector on $R(A)$ along $N(A)$. A c-inverse A_c^- of a core matrix A is defined to be a solution to the matrix equation $XA = Q_A$ ([4, Definition 6.4.1]). We let $\{ A_c^- \}$ denote the collection of all A_c^-. Among the c-inverses, those having $R(A^-_c) = R(A)$ are called χ-inverses ([4, Definition 2.4.1]). According to Theorem 2.4.3 and Remark 2.4.14 of [4], the group inverse $A^\#$ is the uniquely determined χ-inverse satisfying the following condition $N(A^\#) = N(A)$. It is evident that $A^\#$ is a reflexive generalized inverse of A such that $AA^\# = A^\#A$ ([4, Theorem 2.4.6]).

Following [2], we define the core inverse A^\oplus by $A^\oplus = A^\#AA^+$. In fact, A^\oplus is the unique generalized inverse of A, which is both a least squares inverse and a χ-inverse of A. In [2] there are presented some results on characterizations of A^\oplus. Finally, let us point out that the core inverse coincides with the hybrid inverse $A^{\rho*\chi}$ defined by Rao and Mitra [5, Section 4.10.2].

2. Core matrix partial order

We will be concerned here with the core relation defined by Baksalary and Trenkler [2].

Definition 1. For a pair of core matrices $A, B \in \mathbb{C}^{n \times n}$ we define the core relation $<^\oplus$ by saying that $A <^\oplus B$ if the following condition is satisfied:

\[
A^\oplus(B - A) = (B - A)A^\oplus = 0.
\]

The lemma below gives two other conditions that are equivalent to (1).

Lemma 2. Let A and B be core matrices of the same order. Then the following statements are equivalent:
1. \(A \prec B \),
2. \(A^+(B - A) = (B - A)A^# = 0 \),
3. \(A^*A = A^*B \) and \(BA = A^2 \).

Proof. We first recall the well-known fact ([3, Fact 2.10.12]) that \(\text{rank}(AB) = \text{rank}(A) \) if and only if \(R(AB) = R(A) \). This result implies, and is in fact equivalent to, the statement that \(\text{rank}(AB) = \text{rank}(B) \) if and only if \(N(AB) = N(B) \).

To establish the claim, observe that \(A\prec, A^+, A^\# \) and \(A \) have the same rank. Hence, \(R(A\prec) = R(A^+) = R(A) \) and \(N(A\prec) = N(A^+) = N(A^*) \), from which the required result follows.

Let us mention here another equivalent formulation of condition (1). As observed in [2, (3.21)], \(A \prec B \) if and only if \(A^+B = A^+A \) and \(BA = A^2 \).

Another concept referred to is the minus partial ordering (see, for example, [4, Chapter 3]). We say that \(A \prec - B \) if and only if \((A-B)A^- = 0 \) and \(A^-(A-B) = 0 \) for some generalized inverse \(A^- \).

It is worth making the following Proposition, which includes Theorem 8 in [2].

Proposition 3. If \(A \prec B \) then \(A \prec - B \), \(R(A) \subset R(B) \), \(R(A^*) \subset R(B^*) \). The relation \(\prec \) is reflexive and antisymmetric.

The following Theorem describes a new property of the core relation \(\prec \).

Theorem 4. \(A \prec B \) if and only if \(\{B^{-}_{\ell}\} \subset \{A^{-}_{\ell}\} \) and \(\{B^{+}_{\ell}\} \subset \{A^{+}_{\ell}\} \).

Proof. For proof of necessity, assume that \(G \in \{B^{-}_{\ell}\} \). Since \(A \prec B \), we have \(A^*A = A^*B \) and \(R(A) \subset R(B) \). Therefore \(A^*AG = A^*BB^+ = A^* \). Premultiplying this relationship by \(A(A^*)^+ \) yields \(AG = AA^+ \), which justifies \(\{B^{-}_{\ell}\} \subset \{A^{-}_{\ell}\} \). Suppose next that \(G \in \{B^{+}_{\ell}\} \). Since \(BA = A^2 \), we get \(GA = GA^2A^\# = GBAA^\# = Q BA A^\# = AA^\# \). This proves that \(\{B^{+}_{\ell}\} \subset \{A^{+}_{\ell}\} \).

To show sufficiency, note that our assumption \(\{B^{-}_{\ell}\} \subset \{A^{-}_{\ell}\} \) forces \(A = B^\#A^\# \). Then, clearly, \(R(A) \subset R(B) \), and consequently, \(BA = BB^\#A^\# = A^2 \), as needed. Next, to establish \(A^*A = A^*B \), we consider the general expression \(B^{-}_{\ell} = B^+ + (I - B^+B)U \). If \(\{B^{-}_{\ell}\} \subset \{A^{-}_{\ell}\} \), then \(AB^{-}_{\ell} = AB^+ \),
and consequently, \(A(I - B^+B)U = 0 \) for every \(U \in \mathbb{C}^{n \times n} \), which implies that \(A = AB^+B \). Hence \(R(A^*) \subset R(B^*) \). Moreover, \(\{B^*_\ell\} \subset \{A^*_\ell\} \) guarantees that \(A^* = A^*AB^+ \). Therefore \(A^*B = A^*AB^+B = A^*A \), as required.

Theorem 4 guarantees that the core relation is transitive. On account of Proposition 3, we obtain that the relation \(\triangleleft \) defines a matrix partial ordering ([2, Theorem 6]).

In the following we shall link different types of partial orders together. The following terminology will be required ([4, Definitions 6.3.1, 6.5.2]).

For \(A, B \in \mathbb{C}^{m \times n} \), we define the left star relation \(* \) by saying that \(A^* < B \) if \(R(A) \subset R(B) \) and \(A^*A = A^*B \).

For core matrices \(A, B \in \mathbb{C}^{n \times n} \) we define the right sharp relation \(\# \) by setting \(A < \#B \) if \(R(A^*) \subset R(B^*) \) and \(A^2 = BA \).

The star relation is due to Baksalary and Mitra [1]. As is well known, the left star and the right sharp relation are partial orders ([1], [4, Corollary 6.3.10]).

Proposition 3 permits us to conclude with the following

Proposition 5. \(A \triangleleft B \) if and only if \(A^* < B \) and \(A < \#B \).

As a matter of fact, Proposition 5 states that the core relation is an intersection partial ordering ([4, Definition A.8.1]).

Some remarks are due. It was our intention here to present a fairly simple and self-contained proof of Theorem 4. However, once Proposition 5 is established, Theorem 4 may be achieved by appealing to characterizations of one-sided orders as given by Theorems 6.4.8 and 6.5.17 in [4].

References

Received 19 May 2011