SIGNED DOMINATION AND SIGNED DOMATIC NUMBERS OF DIGRAPHS

LUTZ VOLKMANN

Lehrstuhl II für Mathematik
RWTH-Aachen University
52056 Aachen, Germany

e-mail: volkm@math2.rwth-aachen.de

Abstract

Let D be a finite and simple digraph with the vertex set $V(D)$, and let $f : V(D) \to \{-1, 1\}$ be a two-valued function. If $\sum_{x \in N^-[v]} f(x) \geq 1$ for each $v \in V(D)$, where $N^-[v]$ consists of v and all vertices of D from which arcs go into v, then f is a signed dominating function on D. The sum $f(V(D))$ is called the weight $w(f)$ of f. The minimum of weights $w(f)$, taken over all signed dominating functions f on D, is the signed domination number $\gamma_S(D)$ of D. A set $\{f_1, f_2, \ldots, f_d\}$ of signed dominating functions on D with the property that $\sum_{i=1}^d f_i(x) \leq 1$ for each $x \in V(D)$, is called a signed dominating family (of functions) on D. The maximum number of functions in a signed dominating family on D is the signed domatic number of D, denoted by $d_S(D)$.

In this work we show that $4 - n \leq \gamma_S(D) \leq n$ for each digraph D of order $n \geq 2$, and we characterize the digraphs attending the lower bound as well as the upper bound. Furthermore, we prove that $\gamma_S(D) + d_S(D) \leq n + 1$ for any digraph D of order n, and we characterize the digraphs D with $\gamma_S(D) + d_S(D) = n + 1$. Some of our theorems imply well-known results on the signed domination number of graphs.

Keywords: digraph, oriented graph, signed dominating function, signed domination number, signed domatic number.

2010 Mathematics Subject Classification: 05C69.

In this paper all digraphs are finite without loops or multiple arcs. A digraph without directed cycles of length 2 is an oriented graph. The vertex set and arc set of a digraph D are denoted by $V(D)$ and $A(D)$, respectively. The
order $n = n(D)$ of a digraph D is the number of its vertices. If uv is an arc of D, then we also write $u \rightarrow v$, and we say that v is an out-neighbor of u and u is an in-neighbor of v. If A and B are two disjoint vertex sets of a digraph D such that $a \rightarrow b$ for each $a \in A$ and each $b \in B$, then we use the symbol $A \rightarrow B$. For a vertex v of a digraph D, we denote the set of in-neighbors and out-neighbors of v by $N^-(v) = N_D^-(v)$ and $N^+(v) = N_D^+(v)$, respectively. Furthermore, $N^-[v] = N_D^-[v] = N^-(v) \cup \{v\}$. The numbers $d_D^-(v) = d^-(v) = |N^-(v)|$ and $d_D^+(v) = d^+(v) = |N^+(v)|$ are the indegree and outdegree of v, respectively. The minimum indegree, maximum indegree, minimum outdegree and maximum outdegree of D are denoted by $\delta^- = \delta^-(D)$, $\Delta^- = \Delta^-(D)$, $\delta^+ = \delta^+(D)$ and $\Delta^+ = \Delta^+(D)$, respectively. A digraph D is strongly connected if, for each pair of vertices u and v in D, there is a directed path from u to v in D. If $X \subseteq V(D)$ and $v \in V(D)$, then $E(X,v)$ is the set of arcs from X to v. The complete digraph of order n is denoted by K_n^*. If $X \subseteq V(D)$ and f is a mapping from $V(D)$ into some set of numbers, then $f(X) = \sum_{x \in X} f(x)$.

A signed dominating function of a digraph D is defined in [6] as a two-valued function $f : V(D) \rightarrow \{-1,1\}$ such that $f(N^-[v]) = \sum_{x \in N^-[v]} f(x) \geq 1$ for each $v \in V(D)$. The sum $f(V(D))$ is called the weight $w(f)$ of f. The minimum of weights $w(f)$, taken over all signed dominating functions f on D, is called the signed domination number of D, denoted by $\gamma_S(D)$. Signed domination in digraphs has been studied in [3] and [6].

A set $\{f_1,f_2,\ldots,f_d\}$ of signed dominating functions on D with the property that $\sum_{i=1}^{d} f_i(x) \leq 1$ for each vertex $x \in V(D)$, is called a signed dominating family (of functions) on D. The maximum number of functions in a signed dominating family on D is the signed domatic number of D, denoted by $d_S(D)$. The signed domatic number of digraphs was introduced by Sheikholeslami and Volkmann [4]. We start with a simple observation.

Observation 1. Let D be a digraph of order n. If $1 \leq n \leq 2$, then $\gamma_S(D) = n$, and if $n \geq 3$, then

$$4 - n \leq \gamma_S(D) \leq n.$$

Proof. It is easy to see that $\gamma_S(D) = n$ when $1 \leq n \leq 2$. Assume now that $n \geq 3$. The upper bound $\gamma_S(D) \leq n$ is immediate. If f is a signed dominating function on D, then the condition $n \geq 3$ implies that there are at least two distinct vertices u and v such that $f(u) = f(v) = 1$, and thus $\gamma_S(D) \geq 2 - (n - 2) = 4 - n$.

\blacksquare
Let \mathcal{F} be the family of digraphs of order $n \geq 3$ such that there exist two vertices u and v such $\{u, v\} \rightarrow x$ for each $x \in V(D) \setminus \{u, v\}$, the set $V(D) \setminus \{u, v\}$ is independent, and there are at most two arcs from $V(D) \setminus \{u, v\}$ to $\{u, v\}$. If there are two arcs from $V(D) \setminus \{u, v\}$ to $\{u, v\}$, then the end-vertices of these arcs are different. In addition,

- if there is no arc from $V(D) \setminus \{u, v\}$ to $\{u, v\}$, then $\{u, v\}$ is an independent set or there are one or two arcs between u and v,
- if there is exactly one arc from $V(D) \setminus \{u, v\}$ to $\{u, v\}$, say $w \rightarrow u$, then $v \rightarrow u$,
- if there are exactly two arcs from $V(D) \setminus \{u, v\}$ to $\{u, v\}$, say $w \rightarrow u$ and $z \rightarrow v$, where $w = z$ is admissible, then $v \rightarrow u$ as well as $u \rightarrow v$.

Theorem 2. Let D be a digraph of order $n \geq 3$. Then $\gamma_S(D) = 4 - n$ if and only if D is a member of \mathcal{F}.

Proof. If D is a member of \mathcal{F}, then it is a simple matter to verify that the function $f : V(D) \rightarrow \{-1, 1\}$ such that $f(u) = f(v) = 1$ and $f(x) = -1$ for $x \in V(D) \setminus \{u, v\}$ is a signed dominating function on D of weight $4 - n$. Applying Observation 1, we obtain $\gamma_S(D) = 4 - n$.

Conversely, assume that $\gamma_S(D) = 4 - n$, and let f be a signed dominating function on D of weight $4 - n$. Then there exist exactly two vertices, say u and v, such that $f(u) = f(v) = 1$ and $f(x) = -1$ for $x \in V(D) \setminus \{u, v\}$. Because of $\sum_{y \in N^{-}[x]} f(y) \geq 1$ for each $x \in V(D) \setminus \{u, v\}$, we deduce that $\{u, v\} \rightarrow x$ for every $x \in V(D) \setminus \{u, v\}$ and that $V(D) \setminus \{u, v\}$ is an independent set. If there are at least three arcs from $V(D) \setminus \{u, v\}$ to $\{u, v\}$, then u or v, say u, has at least two in-neighbors in $V(D) \setminus \{u, v\}$, and we obtain the contradiction $\sum_{x \in N^{-}[u]} f(x) \leq 0$. Thus there are at most two arcs from $V(D) \setminus \{u, v\}$ to $\{u, v\}$. Now it is straightforward to verify that D is a member of \mathcal{F}.

Corollary 3 (Karami, Sheikholeslami, Khodar [3] 2009). If D is an oriented graph of order $n \geq 3$, then $\gamma_S(D) \geq 4 - n$ with equality if and only if there exist two vertices u and v such $\{u, v\} \rightarrow x$ for each $x \in V(D) \setminus \{u, v\}$, the set $V(D) \setminus \{u, v\}$ is independent, and $\{u, v\}$ is independent or there is exactly one arc between u and v.

Corollary 4. If D is a strongly connected digraph of order $n \geq 5$, then $\gamma_S(D) \geq 6 - n$.
Let H be the digraph of order $n \geq 5$ with vertex set $V(D) = \{u, v, w, x_1, x_2, \ldots, x_{n-3}\}$ such that $\{u, v, w\} \rightarrow \{x_1, x_2, \ldots, x_{n-3}\}$, $x_1 \rightarrow x_2 \rightarrow \cdots \rightarrow x_{n-3} \rightarrow w$ and $w \rightarrow v \rightarrow u \rightarrow w$. Then H is strongly connected, and the function $f : V(H) \rightarrow \{-1, 1\}$ such that $f(u) = f(v) = f(w) = 1$ and $f(x_i) = -1$ for $1 \leq i \leq n - 3$ is a signed dominating function on D of weight $6 - n$. Therefore the bound given in Corollary 4 is best possible.

Let Q be the digraph of order $n = 4$ with vertex set $V(D) = \{u, v, x_1, x_2\}$ such that $\{u, v\} \rightarrow \{x_1, x_2\}$, $x_1 \rightarrow u$, $x_2 \rightarrow v$, $u \rightarrow v$ and $v \rightarrow u$. Then Q is strongly connected, and the function $f : V(Q) \rightarrow \{-1, 1\}$ such that $f(u) = f(v) = 1$ and $f(x_1) = f(x_2) = -1$ is a signed dominating function on Q of weight 0. This example demonstrates that Corollary 4 does not hold for $n = 4$.

Theorem 5. If D is a strongly connected oriented graph of order $n \geq 7$, then $\gamma_S(D) \geq 8 - n$, and this bound is sharp.

Proof. According to Corollary 4, we have $\gamma_S(D) \geq 6 - n$. Suppose to the contrary that $\gamma_S(D) = 6 - n$, and let f be a signed dominating function on D of weight $6 - n$. Then there exist exactly three vertices, say u, v and w, such that $f(u) = f(v) = f(w) = 1$ and $f(x) = -1$ for $x \in V(D) \setminus \{u, v, w\}$. Because of $\sum_{y \in N^{-}[x]} f(y) \geq 1$ for each $x \in V(D) \setminus \{u, v, w\}$, each such vertex has at least two in-neighbors in $\{u, v, w\}$. Let $V(D) \setminus \{u, v, w\} = \{x_1, x_2, \ldots, x_{n-3}\}$.

First we show that $V(D) \setminus \{u, v, w\}$ is an independent set. Suppose to the contrary that there exists an arc, say x_1x_2, in $V(D) \setminus \{u, v, w\}$. Then $\{u, v, w\} \rightarrow x_2$, and since D is a strongly connected oriented graph, x_2 dominates a further vertex, say x_3, in $V(D) \setminus \{u, v, w\}$. Thus $\{u, v, w\} \rightarrow x_3$, and since D is a strongly connected oriented graph, x_3 dominates a further vertex of $V(D) \setminus \{u, v, w\}$. If we continue this process we arrive at a directed cycle C_1, say $C_1 = x_1x_2\ldots x_kx_1$ with $k \geq 3$. This implies that $\{u, v, w\} \rightarrow V(C_1)$. Since D is an oriented graph, there is no arc from C_1 to $\{u, v, w\}$. If $k = n - 3$, then D is not strongly connected, a contradiction. Otherwise, as D is strongly connected, there exists an arc az from C_1 to $V(D) \setminus (V(C_1) \cup \{u, v, w\})$. This implies $\{u, v, w\} \rightarrow z$. As above the vertex z is contained in a cycle C_2 such that $V(C_2) \subseteq (V(D) \setminus (V(C_1) \cup \{u, v, w\}))$. But this leads to the contradiction $\sum_{x \in N^{-}[z]} f(x) \leq 0$, and thus $V(D) \setminus \{u, v, w\}$ is an independent set.

Since D is strongly connected, we deduce that each vertex of $V(D) \setminus \{u, v, w\}$ has an out-neighbor in $\{u, v, w\}$. The hypothesis $n \geq 7$ implies
that at least one vertex in \(\{u, v, w\} \), say \(u \), has at least two in-neighbors in \(V(D) \setminus \{u, v, w\} \). If \(u \) has at least three in-neighbors in \(V(D) \setminus \{u, v, w\} \), then we obtain the contradiction \(\sum_{x \in N^-[u]} f(x) \leq 0 \). If \(u \) has exactly two in-neighbors in \(V(D) \setminus \{u, v, w\} \), then it follows that \(\{v, w\} \to u \). If \(v \) or \(w \), say \(v \), has two in-neighbors in \(V(D) \setminus \{u, v, w\} \), then it follows that \(\{u, w\} \to v \), a contradiction to the fact that \(D \) is an oriented graph. Finally, if \(v \) and \(w \) have exactly one in-neighbor in \(V(D) \setminus \{u, v, w\} \), then \(w \to v \), and we obtain the contradiction \(u \to w \) or \(v \to w \). This contradiction implies that \(\gamma_S(D) \geq 8 - n \).

In order to prove that this bound is sharp, let \(H \) be the digraph of order \(n \geq 7 \) with vertex set \(V(H) = \{u, v, w, z, x_1, x_2, \ldots, x_{n-4}\} \) such that \(\{v, w, z\} \to \{x_1, x_2, \ldots, x_{n-4}\}, x_1 \to u \to \{x_2, x_3, \ldots, x_{n-4}\}, x_1 \to x_2 \to \cdots \to x_{n-4} \to x_1 \) and \(u \to v \to w \to z \to u \). Then \(H \) is a strongly connected oriented graph, and the function \(f : V(H) \to \{-1, 1\} \) such that \(f(u) = f(v) = f(w) = f(z) = 1 \) and \(f(x_i) = -1 \) for \(1 \leq i \leq n-4 \) is a signed dominating function on \(H \) of weight \(8 - n \). Therefore \(\gamma_S(H) \leq 8 - n \), and thus \(\gamma_S(H) = 8 - n \).

Let \(Q \) be the digraph of order \(n = 6 \) with vertex set \(V(Q) = \{u, v, w, x_1, x_2, x_3\} \) such that \(u \to \{x_2, x_3\}, v \to \{x_1, x_3\}, w \to \{x_1, x_2\}, x_1 \to u, x_2 \to v, x_3 \to w \) and \(u \to v \to w \to u \). Then \(Q \) is a strongly connected oriented graph, and the function \(f : V(Q) \to \{-1, 1\} \) such that \(f(u) = f(v) = f(w) = 1 \) and \(f(x_1) = f(x_2) = f(x_3) = -1 \) is a signed dominating function on \(Q \) of weight \(0 \). This example demonstrates that Theorem 5 does not hold for \(n = 6 \).

Theorem 6. Let \(r \geq 0 \) be an integer, and let \(D \) be an oriented graph of order \(n \) such that \(d^-(x) = r \) for every vertex \(x \in V(D) \). Then

\[
\gamma_S(D) \geq 2r + 2 - n \text{ if } r \text{ is even}
\]

and

\[
\gamma_S(D) \geq 2r + 4 - n \text{ if } r \text{ is odd}.
\]

Proof. Let \(f \) be an arbitrary signed dominating function on \(D \), and let \(V^+ \) be the set of vertices with \(f(x) = 1 \) for \(x \in V^+ \) and \(V^- = V(D) \setminus V^+ \). Furthermore, define \(|V^+| = t \).

First, let \(r = 2k \) be even. Because of \(\sum_{x \in N^-[u]} f(x) \geq 1 \) for each vertex \(u \), every vertex \(x \in V^+ \) has at most \(k \) in-neighbors in \(V^- \). It follows that
2kt = \sum_{x \in V^+} d^-(x) \leq kt + \frac{t(t-1)}{2}

and thus \(t \geq 2k + 1 \). Since \(f \) was chosen arbitrary, this implies the desired bound \(\gamma_S(D) \geq 2k + 1 - (n - (2k + 1)) = 4k + 2 - n = 2r + 2 - n \).

Second, let \(r = 2k - 1 \) be odd. Because of \(\sum_{x \in N[u]} f(x) \geq 1 \) for each vertex \(u \), every vertex \(x \in V^+ \) has at most \(k - 1 \) in-neighbors in \(V^- \). It follows that

\[
(2k-1)t = \sum_{x \in V^+} d^-(x) \leq t(k-1) + \frac{t(t-1)}{2}
\]

and thus \(t \geq 2k + 1 \). This implies that \(\gamma_S(D) \geq 2k + 1 - (n - (2k + 1)) = 4k + 2 - n = 2r + 2 - n \), and the proof is complete. \(\blacksquare \)

Theorem 7. If \(D \) is a digraph of order \(n \), then

\[
\gamma_S(D) \geq \frac{\delta^+ + 2 - \Delta^+}{\delta^+ + 2 + \Delta^+} \cdot n.
\]

Proof. Let \(f \) be an arbitrary signed dominating function on \(D \), and let \(V^+ \) be the set of vertices with \(f(x) = 1 \) for \(x \in V^+ \) and \(V^- = V(D) \setminus V^+ \). Then

\[
n \leq \sum_{x \in V(D)} f(N^-[x]) = \sum_{x \in V(D)} (d^+(x) + 1)f(x)
\]

\[
= \sum_{x \in V^+} (d^+(x) + 1) - \sum_{x \in V^-} (d^+(x) + 1)
\]

\[
\leq |V^+|(|\Delta^+ + 1| - |V^-||\delta^+ + 1|)
\]

\[
= |V^+|(|\Delta^+ + \delta^+ + 2| - n(\delta^+ + 1)).
\]

This implies

\[
|V^+| \geq \frac{n(\delta^+ + 2)}{\delta^+ + 2 + \Delta^+},
\]

and hence we obtain the desired bound as follows

\[
\gamma_S(D) \geq |V^+| - |V^-| = 2|V^+| - n
\]
Signed Domination and Signed Domatic ... 421

≥ \frac{2n(\delta^+ + 2)}{\delta^+ + 2 + \Delta^+} - n

= \frac{\delta^+ + 2 - \Delta^+}{\delta^+ + 2 + \Delta^+} \cdot n.

Corollary 8. If \(D \) is a digraph of order \(n \) such that \(d^+(x) = k \) for all \(x \in V(D) \), then

\[\gamma_S(D) \geq \frac{n}{k+1}. \]

Corollary 9 (Karami, Sheikholeslami, Khodar [3] 2009). If \(D \) is a digraph of order \(n \) such that \(d^-(x) = d^+(x) = k \) for all \(x \in V(D) \), then

\[\gamma_S(D) \geq \frac{n}{k+1}. \]

If \(f \) is a signed dominating function on \(D \), and \(d^-(v) \) is odd, then it follows that \(f(N^-[v]) = \sum_{x \in N^-[v]} f(x) \geq 2 \). Using this inequality, we obtain the next result analogously to the proof of Theorem 7.

Theorem 10. If \(D \) is a digraph of order \(n \) such that \(d^-(v) \) is odd for all \(v \in V(D) \), then

\[\gamma_S(D) \geq \frac{\delta^+ + 4 - \Delta^+}{\delta^+ + 2 + \Delta^+} \cdot n. \]

Corollary 11. Let \(D \) be a digraph of order \(n \) such that \(d^-(x) = d^+(x) = k \) for all \(x \in V(D) \). If \(k \) is odd, then

\[\gamma_S(D) \geq \frac{2n}{k+1}. \]

Theorem 12. If \(D \) is a digraph of order \(n \), then

\[\gamma_S(D) \geq \frac{n + |A(D)| - n\Delta^+}{\Delta^+ + 1}. \]

Proof. Let \(f \) be an arbitrary signed dominating function on \(D \), and let \(V^+ \) be the set of vertices with \(f(x) = 1 \) for \(x \in V^+ \) and \(V^- = V(D) \setminus V^+ \). Then

\[n \leq \sum_{x \in V(D)} f(N^-[x]) = \sum_{x \in V(D)} (d^+(x) + 1)f(x) \]
= \sum_{x \in V^+} (d^+(x) + 1) - \sum_{x \in V^-} (d^+(x) + 1) \\
= |V^+| - |V^-| + \sum_{x \in V^+} d^+(x) - \sum_{x \in V^-} d^+(x) \\
= 2|V^+| - n + 2 \sum_{x \in V^+} d^+(x) - \sum_{x \in V(D)} d^+(x) \\
\leq 2|V^+| - n + 2|V^+| \Delta^+ - |A(D)| \\
= 2|V^+| (\Delta^+ + 1) - n - |A(D)|.

This implies

\[|V^+| \geq \frac{2n + |AD|}{2(\Delta^+ + 1)}. \]

and hence we obtain the desired bound as follows

\[\gamma_S(D) \geq |V^+| - |V^-| = 2|V^+| - n \]

\[\geq \frac{2n + |A(D)|}{\Delta^+ + 1} - n \]

\[= \frac{n + |A(D)| - n\Delta^+}{\Delta^+ + 1}. \]

Theorem 12 also implies Corollary 8 immediately. In the special case that \(d^-(v) \) is odd for all \(v \in V(D) \), we obtain \(\gamma_S(D) \geq (2n + |A(D)| - n\Delta^+)/ (\Delta^+ + 1) \) instead of the bound in Theorem 12.

The signed dominating function of a graph \(G \) is defined in [1] as a function \(f : V(G) \to \{-1, 1\} \) such that \(\sum_{x \in N_G[v]} f(x) \geq 1 \) for all \(v \in V(G) \). The sum \(\sum_{x \in V(G)} f(x) \) is the weight \(w(f) \) of \(f \). The minimum of weights \(w(f) \), taken over all signed dominating functions \(f \) on \(G \) is called the signed domination number of \(G \), denoted by \(\gamma_S(G) \).

The associated digraph \(D(G) \) of a graph \(G \) is the digraph obtained when each edge \(e \) of \(G \) is replaced by two oppositely oriented arcs with the same ends as \(e \). Since \(N^{-}_D(v) = N_G(v) \) for each vertex \(v \in V(G) = V(D(G)) \), the following useful observation is valid.
Observation 13. If \(D(G) \) is the associated digraph of a graph \(G \), then \(\gamma_S(D(G)) = \gamma_S(G) \).

There are a lot of interesting applications of Observation 13, as for example the following three results.

Corollary 14 (Zhang, Xu, Li, Liu [7] 1999). If \(G \) is a graph of order \(n \), maximum degree \(\Delta(G) \) and minimum degree \(\delta(G) \), then

\[
\gamma_S(G) \geq \frac{\delta(G) + 2 - \Delta(G)}{\delta(G) + 2 + \Delta(G)} \cdot n.
\]

Proof. Since \(\delta(G) = \delta^+(D(G)) \), \(\Delta(G) = \Delta^+(D(G)) \) and \(n = n(D(G)) \), it follows from Theorem 7 and Observation 13 that

\[
\gamma_S(G) = \gamma_S(D(G)) \geq \frac{\delta^+(D(G)) + 2 - \Delta^+(D(G))}{\delta^+(D(G)) + 2 + \Delta^+(D(G))} \cdot n = \frac{\delta(G) + 2 - \Delta(G)}{\delta(G) + 2 + \Delta(G)} \cdot n.
\]

Corollary 15 (Dunbar, Hedetniemi, Henning, Slater [1] 1995). If \(G \) is a \(k \)-regular graph of order \(n \), then \(\gamma_S(G) \geq n/(k + 1) \).

Corollary 16 (Henning, Slater [2] 1996). For every \(k \)-regular graph \(G \) of order \(n \) with \(k \) odd, \(\gamma_S(G) \geq 2n/(k + 1) \).

Proof. Since \(k \) is odd and \(d_G(x) = d^-_{D(G)}(x) = d^+_{D(G)}(x) = k \) for all \(x \in V(G) \) and \(n = n(D(G)) \), it follows from Corollary 11 and Observation 13 that

\[
\gamma_S(G) = \gamma_S(D(G)) \geq \frac{2n(D(G))}{k + 1} = \frac{2n(G)}{k + 1}.
\]

Theorem 17. If \(D \) is a digraph of order \(n \), then

\[
\gamma_S(D) \geq n \left(\frac{2 \left\lfloor \frac{\delta^-(D)}{2} \right\rfloor + 1 - \Delta^+(D)}{\Delta^+(D) + 1} \right).
\]

Proof. Let \(f \) be a signed dominating function on \(D \) such that \(w(f) = \gamma_S(D) \), and let \(V^+ \) be the set of vertices with \(f(x) = 1 \) for \(x \in V^+ \) and \(V^- = V(D) \setminus V^+ \). In addition, let \(s \) be the number of arcs from \(V^+ \) to \(V^- \).
The condition \(f(N^-[x]) \geq 1 \) implies that \(|E(V^+, x)| \geq |E(V^-, x)| \) for \(x \in V^+ \) and \(|E(V^+, x)| \geq |E(V^-, x)| + 2 \) for \(x \in V^- \). Thus we obtain

\[
\delta^-(D) \leq d^-(x) = |E(V^+, x)| + |E(V^-, x)| \leq 2|E(V^+, x)| - 2
\]

and so \(|E(V^+, x)| \geq \left\lceil \frac{\delta^-(D)+2}{2} \right\rceil \) for each vertex \(x \in V^- \). Hence we deduce that

(1) \[
s = \sum_{x \in V^-} |E(V^+, x)| \geq \sum_{x \in V^-} \left\lceil \frac{\delta^-(D)+2}{2} \right\rceil = |V^-| \left\lceil \frac{\delta^-(D)+2}{2} \right\rceil.
\]

Since \(|E(V^+, x)| \geq \left\lceil \frac{\delta^-(D)}{2} \right\rceil \) for \(x \in V^+ \), it follows that

\[
|E(D[V^+])| = \sum_{y \in V^+} |E(V^+, y)| \geq |V^+| \left\lceil \frac{\delta^-(D)}{2} \right\rceil.
\]

This implies that

(2) \[
s = \sum_{y \in V^+} d^+(y) - |E(D[V^+])| \leq \sum_{y \in V^+} d^+(y) - |V^+| \left\lceil \frac{\delta^-(D)}{2} \right\rceil \leq |V^+| \Delta^+(D) - |V^+| \left\lceil \frac{\delta^-(D)}{2} \right\rceil.
\]

Inequalities (1) and (2) lead to

\[
|V^-| \leq \frac{|V^+| \Delta^+(D) - |V^+| \left\lceil \frac{\delta^-(D)}{2} \right\rceil}{\left\lceil \frac{\delta^-(D)+2}{2} \right\rceil}.
\]

Since \(\gamma_S(D) = |V^+| - |V^-| \) and \(n = |V^+| + |V^-| \), it follows from the last inequality that

\[
\gamma_S(D) \geq |V^+| - \frac{|V^+| \Delta^+(D) - |V^+| \left\lceil \frac{\delta^-(D)}{2} \right\rceil}{\left\lceil \frac{\delta^-(D)+2}{2} \right\rceil}
\]
\[= \left(\frac{n + \gamma_S(D)}{2} \right) 2 \left\lceil \frac{\Delta^-(D)}{2} \right\rceil + 1 - \Delta^+(D) \]

and this yields to the desired bound. \hfill \blacksquare

Note that Observation 13 and Theorem 17 also imply Corollaries 15 and 16 immediately.

Theorem 18. For any digraph \(D \), \(\gamma_S(D) = n(D) \) if and only if every vertex has either indegree less or equal one or is an in-neighbor of a vertex of indegree one.

Proof. Assume that every vertex has either indegree less or equal one or is an in-neighbor of a vertex of indegree one. Let \(f \) be an arbitrary signed dominating function on \(D \). If \(v \) is vertex such that \(d^-(v) \leq 1 \), then the definition of the signed dominating function implies that \(f(v) = 1 \). If \(v \) is an in-neighbor of a vertex \(y \) such that \(d^-(y) = 1 \), then the condition \(\sum_{x \in N^{-}[y]} f(x) \geq 1 \) leads to \(f(v) = 1 \). Hence \(f(v) = 1 \) for each \(v \in V(D) \) and we deduce that \(\gamma_S(D) = n(D) \).

The necessity follows from the observation that if we have a vertex \(v \) that is neither of indegree less or equal one nor an in-neighbor of a vertex of indegree one, then we can assign the value -1 to \(v \) and the value 1 to each other vertex to produce a signed dominating function on \(D \) of weight \(n(D) - 2 \).

The following known results are useful for the proof of our last theorem.

Theorem A (Sheikholeslami, Volkmann [4]). For any digraph \(D \),

\[\gamma_S(D) \cdot d_S(D) \leq n(D). \]

Theorem B (Sheikholeslami, Volkmann [4]). For any digraph \(D \),

\[1 \leq d_S(D) \leq \delta^-(D) + 1. \]

Theorem C (Sheikholeslami, Volkmann [4]). The signed domatic number of a digraph is an odd integer.

Theorem D (Sheikholeslami, Volkmann [4] and Volkmann, Zelinka [5]). Let \(K^*_n \) be the complete digraph of order \(n \). Then \(d_S(K^*_n) = n \) if \(n \) is odd,
and if \(n = 2p \) is even, then \(d_S(K_n^*) = p \) if \(p \) is odd and \(d_S(K_n^*) = p - 1 \) if \(p \) is even.

Theorem 19. If \(D \) is a digraph of order \(n \), then

\[
\gamma_S(D) + d_S(D) \leq n + 1
\]

with equality if and only if \(n \) is odd and \(D = K_n^* \) or every vertex of \(D \) has either indegree less or equal one or is an in-neighbor of a vertex of indegree one.

Proof. According to Theorem A, we obtain

\[
\gamma_S(D) + d_S(D) \leq \frac{n}{d_S(D)} + d_S(D).
\]

Using the fact that \(g(x) = x + n/x \) is decreasing for \(1 \leq x \leq \sqrt{n} \) and increasing for \(\sqrt{n} \leq x \leq n \), this inequality leads to (3) immediately.

If \(n \) is odd and \(D = K_n^* \), then \(\gamma_S(D) = 1 \) and Theorem D implies \(d_S(D) = n \), and we obtain equality in (3). If every vertex of \(D \) has either indegree less or equal one or is an in-neighbor of a vertex of indegree one, then Theorems B, C and 18 yield that \(\gamma_S(D) = n \) and \(d_S(D) = 1 \), and so we have equality in (3) too.

Conversely, assume that \(D \) is neither complete of odd order nor that every vertex of \(D \) has either indegree less or equal one or is an in-neighbor of a vertex of indegree one. First we note that every digraph of order \(1 \leq n \leq 3 \) is complete of odd order or every vertex of \(D \) has either indegree less or equal one or is an in-neighbor of a vertex of indegree one, and hence \(\gamma_S(D) + d_S(D) = n + 1 \) for \(n \in \{1, 2, 3\} \).

Assume now that \(n \geq 4 \). If \(D \) is not complete, then \(\delta^-(D) \leq n - 2 \), and thus Theorem B leads to \(d_S(D) \leq n - 1 \). If \(D \) is complete and \(n \) is even, then Theorem D implies \(d_S(D) \leq n/2 \leq n - 1 \). Thus, in view of Theorem 18, we observe that \(d_S(D) \leq n - 1 \) and \(\gamma_S(G) \leq n - 1 \) if \(D \) is neither complete of odd order nor that every vertex of \(D \) has either indegree less or equal one or is an in-neighbor of a vertex of indegree one. If \(d_S(D) = 1 \), then we deduce that \(\gamma_S(D) + d_S(D) \leq 1 + n - 1 = n \). If \(d_S(D) \geq 2 \), then as above and since \(n \geq 4 \), we obtain

\[
\gamma_S(D) + d_S(D) \leq \frac{n}{d_S(D)} + d_S(D) \leq \max \left\{ \frac{n}{2} + 2, \frac{n}{n - 1} + n - 1 \right\} < n + 1.
\]
Hence the equality $\gamma_S(D) + d_S(D) = n + 1$ is impossible in this case, and the proof of Theorem 19 is complete.

Note that the inequality (3) was proved in [4], however, the characterization of the digraphs D with $\gamma_S(D) + d_S(D) = n + 1$ is new.

References

Received 29 January 2010
Revised 26 April 2010
Accepted 27 April 2010