Robustness of Estimation
of First-Order Autoregressive Model
Under Contaminated Uniform White Noise

Karima Nouali
Department of Mathematics
Faculty of Sciences, University of Tizi-Ouzou
Tizi-Ouzou, 15000, Algeria
E-mail: noualikarima@yahoo.fr

Abstract

The first-order autoregressive model with uniform innovations is considered. In this paper, we study the bias-robustness and MSE-robustness of modified maximum likelihood estimator of parameter of the model against departures from distribution of white noise. We used the generalized Beta distribution to describe these departures.

Keywords: autoregressive model, bias, MSE, robustness, generalized Beta distribution.

1. Introduction

Consider the following autoregressive model

\[X_t = \rho X_{t-1} + \varepsilon_t, \quad t = \ldots, -1, 0 + 1, \ldots, \] with \(0 \leq \rho < 1, \]
where the ε_t’s are i.i.d and distributed according to uniform distribution $U(0, \theta)$.

Bell and Smith (1986) studied the estimation and testing problem on the parameter ρ for model (1) with ε_t are i.i.d and non-negative. The study is established in three parametric cases: Gaussian, exponential and uniform as well as for the nonparametric case where it only assumed that ε’s have a positive continuous distribution. In these different models, various types of point estimates and procedures of test for ρ are introduced by authors.

In the case of model (1) defined above, Nouali and Fellag (2002) obtained an approximation of bias of maximum likelihood estimator (MLE) for parameter ρ. A formula of approximate bias of MLE is given also when a single outlier occurs at specified time with a known amplitude. In the same model, Nouali and Fellag (2005) proposed a new testing procedures which perform a test on the parameter ρ in presence of single innovation outlier comparing to those proposed by Bell and Smith (1986).

Now, we assume X_0 distributed as $U(0, \theta/(1 - \rho))$ and observe the segment of observations

$$X_1, X_2, \ldots, X_n, \quad n \text{ fixed}$$

from a model (1). The maximum likelihood estimator (MLE) for ρ is (Bell and Smith, 1986) $\hat{\rho} = \min_{2 \leq t \leq n} (X_t/X_{t-1})$. Then, we can write

$$\hat{\rho} = \rho + \min_{2 \leq t \leq n} \left(\frac{\varepsilon_t}{X_{t-1}} \right).$$

Since the process is mean stationary with mean $m_\theta = \frac{\theta}{2(1-\rho)}$, we can use the method proposed by Andel (1988) in exponential model which consist to substitute m_θ for X_{t-1} in (3). Then, the estimator becomes $\hat{\rho} = \rho + \frac{1}{m_\theta} \min_{2 \leq t \leq n} (\varepsilon_t)$.

Let $b(\rho)$ and $MSE(\rho)$ be the bias and the mean square error of estimator $\hat{\rho}$ in model (1) respectively. Hence,
Robustness of estimation of first-order autoregressive ...

\[b(\rho) = \frac{1}{m_{\theta}} E \left(\min_{2 \leq t \leq n} (\varepsilon_t) \right) = \frac{2}{n} (1 - \rho), \quad \text{(Nouali and Fellag, 2002)} \]

\[MSE(\rho) = \frac{1}{m_{\theta}^2} E \left(\min_{2 \leq t \leq n} (\varepsilon_t)^2 \right) = \frac{8}{n(n+1)} (1 - \rho)^2. \]

In fact, the pdf function \(h(\cdot) \) of random variable \(Z = \min_{2 \leq t \leq n} (\varepsilon_t) \) is obtained after simple computation

\[h(z) = \begin{cases}
\frac{n-1}{\theta} \left(1 - \frac{z}{\theta}\right)^{-2} & \text{if } 0 \leq z \leq \theta, \\
0 & \text{else.}
\end{cases} \]

with \(E(Z) = \frac{\theta}{n} \) and \(E(Z^2) = \frac{2\theta^2}{n(n+1)} \).

Our aim is to discuss a bias-robustness and MSE-robustness of estimator \(\tilde{\rho} \) when the distribution of white noise is contaminated by generalized Beta distribution. Note that the bias-robustness of estimator \(\tilde{\rho} \) is considered by Fellag and Ibazizen (2001) in the case of contaminated exponential white noise. The authors used a class of exponential power distribution to modeling the departures from original model.

2. Bias and mse of \(\tilde{\rho} \) under generalized beta white noise

The statistical model with uniform white noise is denoted by

\[M_{1,1} = (\mathbb{R}^+, \mathcal{B}^+, U(0, \theta), \theta > 0), \]

where \(\mathbb{R}^+ \) is the real-half, \(\mathcal{B}^+ \) is the family of Borel subsets of \(\mathbb{R}^+ \).
We can consider the following model as extension of original model \(M_{1,1} \):

\[
M_{\alpha,\beta} = (\mathbb{R}^+, \mathbb{B}^+, \text{GBeta}_\theta(\alpha, \beta), \theta > 0, \alpha, \beta \in \mathbb{R}^+_+),
\]

where \(\text{GBeta}_\theta(\alpha, \beta) \) is a general Beta distribution on three parameters defined on an interval \((0, \theta)\) with density

\[
f_{\alpha,\beta}(x, \theta) = \frac{1}{\theta^{\alpha+\beta-1} B(\alpha, \beta)} x^{\alpha-1}(\theta - x)^{\beta-1}, 0 \leq x \leq \theta.
\]

Notice that the uniform distribution over \((0, \theta)\) is a particular generalized Beta distribution of parameters \(\theta, \alpha \) and \(\beta \) with \(\alpha = \beta = 1 \).

Now, we suppose that the model \(M_{1,1} \) is violated in such way that the innovations \(\varepsilon_1, \ldots, \varepsilon_n \) are distributed according to \(\text{GBeta}_\theta(\alpha, \beta) \) rather than the uniform distribution over \((0, \theta)\) and we assume that \(\theta \) is equal to 1 without loss of generality.

We have

\[
E(\varepsilon_t) = \frac{\alpha}{\alpha + \beta}, \forall t = 1, \ldots, n.
\]

We assume that \(X_0 \) is distributed according to \(\text{GBeta}_1(1, 1) \) with

\[
\tilde{\theta} = \frac{2\alpha}{(\alpha + \beta)(1 - \rho)},
\]

then a process \((X_t)\) is mean stationary with mean

\[
m_{\alpha,\beta} = \frac{\alpha}{(\alpha + \beta)(1 - \rho)}
\]

and we can write
\[
\hat{\rho} = \rho + \frac{1}{m_{\alpha,\beta}} \min_{2 \leq t \leq n} \varepsilon_t = \rho + \frac{(\alpha + \beta)(1 - \rho)}{\alpha} \min_{2 \leq t \leq n} \varepsilon_t.
\]

Let \(H(z) \) and \(h(z) \) be the distribution and the pdf function respectively of random variable \(Z = \min_{2 \leq t \leq n} \varepsilon_t \). After computation, we obtain

\[
h(z) = (n - 1) f_{\alpha,\beta}(z), [1 - F_{\alpha,\beta}(z)]^{n-2}.
\]

The bias and MSE of \(\hat{\rho} \) in Model \(M_{\alpha,\beta} \) are given by numerical formulas (4) and (5) respectively

\[
b_{\alpha,\beta}(\rho) = \frac{(n - 1)(\alpha + \beta)(1 - \rho)}{\alpha B(\alpha, \beta)}
\]

\[
\cdot \int_0^1 z^\alpha (1 - z)^{\beta - 1} [1 - B_z(\alpha, \beta)]^{n-2}. dz, \forall n.
\]

\[
MSE_{\alpha,\beta}(\rho) = \frac{(n - 1)(\alpha + \beta)^2(1 - \rho)^2}{\alpha^2 B(\alpha, \beta)}
\]

\[
\cdot \int_0^1 z^{\alpha+2}, (1 - z)^{\beta - 1} [1 - B_z(\alpha, \beta)]^{n-2}. dz, \forall n.
\]

where
\[B_z(\alpha, \beta) = \int_0^z x^{\alpha-1} (1 - x)^{\beta-1} dx \]

denotes the incomplete Beta function.

In this paper, we study a behavior of bias and MSE of estimator \(\hat{\rho} \) in the following two particular extensions of original model:

\[M_\alpha = M_{\alpha,1} \quad \text{and} \quad M_\beta = M_{1,\beta}. \]

We used a measure of robustness in sense of stability proposed by Zielinski (1977). In our case, if a property of estimator is a bias, this measure of robustness takes the following form

\[
rb_{[\lambda_1, \lambda_2]}(\rho) = \sup_{\lambda_1 \leq \lambda < \lambda_2} b(\rho) - \inf_{\lambda_1 \leq \lambda < \lambda_2} b(\rho), \quad \text{in model } M_\lambda
\]

with \(\lambda = \alpha \) or \(\beta \).

This function is called the "bias-robustness function". It represents a maximal oscillation of the bias of estimator \(\hat{\rho} \) in "supermodel" \(M_\lambda \).

- We say that the estimator is "absolutely robust" according to bias criteria in model \(M_\lambda \) if

\[
rb_\lambda(\rho) = 0, \forall \lambda > 0.
\]

- When \(rb_{\lambda \in I_1}(\rho) < rb_{\lambda \in I_2}(\rho) \) then the bias of the estimator is more stable for \(\lambda \in I_1 \) than for \(\lambda \in I_2 \), where \(I_1 \) and \(I_2 \) are two intervals of \(\mathbb{R}_+^* \).

In the same manner as bias-robustness function, we can define MSE-robustness function which denote by \(rm(.) \). For more details on this robustness approach, we refer the reader to Zielinski (1977).
2.1. The behavior of bias and mse of $\hat{\rho}$ in model M_α

In the model M_α, the density $h(z)$ is written

$$h(z) = \alpha(n - 1).z^{-1}.[1 - z^\alpha]^{n-2}.$$

The bias and MSE of estimator $\hat{\rho}$ are given respectively by formula (6) and (7)

(6) \[b_\alpha(\rho) = \frac{(1 + \alpha)}{\alpha^2} B(1/\alpha, n)(1 - \rho), \forall n. \]

\[MSE_\alpha(\rho) \]

(7) \[= \frac{(1 + \alpha)^2}{\alpha^2} (n - 1) B(1 + 2/\alpha, n - 1)(1 - \rho)^2, \forall n. \]

Let us adopt the following notations:

$b_{\text{min}}, M_{\text{min}}$: the minimal value of bias respectively of MSE.

$b_{\text{max}}, M_{\text{max}}$: the maximal value of bias respectively of MSE.

In order to illustrate a behavior of bias and MSE of estimator $\hat{\rho}$ in model M_α, we give in Tables 1 and 2 the exact values of bias and MSE as function of α and ρ for different smaller values of size ($n=5, 10, \text{and } 20$). The values are computed using a formula (6) and (7).
Table 1. Values of the $b_\alpha(\rho)$ for $n = 5, 10$ and 20.

<table>
<thead>
<tr>
<th>α</th>
<th>$n = 5$</th>
<th>$n = 10$</th>
<th>$n = 20$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\rho = 0$</td>
<td>$\rho = 0.4$</td>
<td>$\rho = 0.9$</td>
</tr>
<tr>
<td>0.1</td>
<td>0.0110</td>
<td>0.0066</td>
<td>0.0011</td>
</tr>
<tr>
<td>0.2</td>
<td>0.0476</td>
<td>0.0286</td>
<td>0.0048</td>
</tr>
<tr>
<td>0.4</td>
<td>0.1492</td>
<td>0.0895</td>
<td>0.0149</td>
</tr>
<tr>
<td>0.6</td>
<td>0.2475</td>
<td>0.1485</td>
<td>0.0248</td>
</tr>
<tr>
<td>0.8</td>
<td>0.3310</td>
<td>0.1986</td>
<td>0.0331</td>
</tr>
<tr>
<td>1.0</td>
<td>0.4000</td>
<td>0.2400</td>
<td>0.0400</td>
</tr>
<tr>
<td>1.6</td>
<td>0.5453</td>
<td>0.3272</td>
<td>0.0545</td>
</tr>
<tr>
<td>2.0</td>
<td>0.6095</td>
<td>0.3657</td>
<td>0.0610</td>
</tr>
<tr>
<td>3.0</td>
<td>0.7121</td>
<td>0.4273</td>
<td>0.0712</td>
</tr>
<tr>
<td>4.0</td>
<td>0.7722</td>
<td>0.4633</td>
<td>0.0772</td>
</tr>
<tr>
<td>6.0</td>
<td>0.8395</td>
<td>0.5037</td>
<td>0.0840</td>
</tr>
<tr>
<td>8.0</td>
<td>0.8761</td>
<td>0.5257</td>
<td>0.0876</td>
</tr>
<tr>
<td>10</td>
<td>0.8992</td>
<td>0.5395</td>
<td>0.0899</td>
</tr>
<tr>
<td>b_{max}</td>
<td>1</td>
<td>0.6</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Table 2. Values of the $MSE_\alpha(\rho)$ for $n = 5, 10$ and 20.

<table>
<thead>
<tr>
<th>α</th>
<th>$n = 5$</th>
<th></th>
<th></th>
<th>$n = 10$</th>
<th></th>
<th></th>
<th>$n = 20$</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\rho = 0$</td>
<td>$\rho = 0.4$</td>
<td>$\rho = 0.9$</td>
<td>$\rho = 0$</td>
<td>$\rho = 0.4$</td>
<td>$\rho = 0.9$</td>
<td>$\rho = 0$</td>
<td>$\rho = 0.4$</td>
<td>$\rho = 0.9$</td>
</tr>
<tr>
<td>0.1</td>
<td>0.0114</td>
<td>0.0041</td>
<td>0.0001</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.2</td>
<td>0.0360</td>
<td>0.0129</td>
<td>0.0004</td>
<td>0.0004</td>
<td>0.0001</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.4</td>
<td>0.0972</td>
<td>0.0350</td>
<td>0.0010</td>
<td>0.0061</td>
<td>0.0022</td>
<td>0.0001</td>
<td>0.0003</td>
<td>0.0001</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.6</td>
<td>0.1590</td>
<td>0.0572</td>
<td>0.0016</td>
<td>0.0214</td>
<td>0.0077</td>
<td>0.0002</td>
<td>0.0025</td>
<td>0.0009</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.8</td>
<td>0.2158</td>
<td>0.0777</td>
<td>0.0022</td>
<td>0.0446</td>
<td>0.0161</td>
<td>0.0004</td>
<td>0.0086</td>
<td>0.0031</td>
<td>0.0001</td>
</tr>
<tr>
<td>1.0</td>
<td>0.2667</td>
<td>0.0960</td>
<td>0.0027</td>
<td>0.0727</td>
<td>0.0262</td>
<td>0.0007</td>
<td>0.0190</td>
<td>0.0069</td>
<td>0.0002</td>
</tr>
<tr>
<td>1.6</td>
<td>0.3884</td>
<td>0.1398</td>
<td>0.0039</td>
<td>0.1657</td>
<td>0.0597</td>
<td>0.0017</td>
<td>0.0702</td>
<td>0.0253</td>
<td>0.0007</td>
</tr>
<tr>
<td>3.0</td>
<td>0.5610</td>
<td>0.2020</td>
<td>0.0056</td>
<td>0.3496</td>
<td>0.1259</td>
<td>0.0035</td>
<td>0.2190</td>
<td>0.0788</td>
<td>0.0022</td>
</tr>
<tr>
<td>4.0</td>
<td>0.6349</td>
<td>0.2286</td>
<td>0.0063</td>
<td>0.4434</td>
<td>0.1596</td>
<td>0.0044</td>
<td>0.3116</td>
<td>0.1122</td>
<td>0.0031</td>
</tr>
<tr>
<td>6.0</td>
<td>0.7269</td>
<td>0.2617</td>
<td>0.0073</td>
<td>0.5705</td>
<td>0.2054</td>
<td>0.0057</td>
<td>0.4503</td>
<td>0.1621</td>
<td>0.0045</td>
</tr>
<tr>
<td>8.0</td>
<td>0.7819</td>
<td>0.2815</td>
<td>0.0078</td>
<td>0.6512</td>
<td>0.2344</td>
<td>0.0065</td>
<td>0.5450</td>
<td>0.1962</td>
<td>0.0055</td>
</tr>
<tr>
<td>10.0</td>
<td>0.8185</td>
<td>0.2946</td>
<td>0.0082</td>
<td>0.7067</td>
<td>0.2544</td>
<td>0.0071</td>
<td>0.6127</td>
<td>0.2206</td>
<td>0.0061</td>
</tr>
<tr>
<td>M_{max}</td>
<td>1</td>
<td>0.36</td>
<td>0.01</td>
<td>1</td>
<td>0.36</td>
<td>0.01</td>
<td>1</td>
<td>0.36</td>
<td>0.01</td>
</tr>
</tbody>
</table>
The results leads the following comments:

Comment 1. One can remark that the bias and MSE of estimator $\tilde{\rho}$ are an increasing functions of α. The variation of these two criterions is very small when $\alpha \in (0, 1]$ than when $\alpha \in (1, +\infty]$.

Comment 2. When α is close to zero, the bias and MSE of estimator $\tilde{\rho}$ tend to value $b_{\min} = M_{\min} = 0$.

Comment 3. When α tend to infinity,

\[
\begin{align*}
 b_\alpha(\rho) &\rightarrow b_{\max} = (1 - \rho), \\
 MSE_\alpha(\rho) &\rightarrow M_{\max} = (1 - \rho)^2.
\end{align*}
\]

After computations, we obtain the following expressions of bias and MSE robustness functions:

\[
\begin{align*}
 rb_{(0,1]}(\rho) &= b_1(\rho) - b_{\min} = \frac{2(1 - \rho)}{n}, \\
 rb_{(1, +\infty)}(\rho) &= b_{\max} - b_1(\rho) = \frac{(n - 2)(1 - \rho)}{n}, \\
 rm_{(0,1]}(\rho) &= MSE_1(\rho) - M_{\min} = \frac{8(1 - \rho)^2}{n(n + 1)}, \\
 rm_{(1, +\infty)}(\rho) &= M_{\max} - MSE_1(\rho) = \frac{n(n + 1) - 8}{n(n + 1)}. \end{align*}
\]
and we can establish the following inequalities

\[rb_{(0,1)}(\rho) < rb_{(1, +\infty)}(\rho), \forall n. \]

\[rm_{(0,1)}(\rho) < rm_{(1, +\infty)}(\rho), \forall n \geq 4. \]

The two inequalities show that the estimator \(\hat{\rho} \) is more stable for \(\alpha \in (0, 1] \) than for \(\alpha \in (1, +\infty[\) with respect to bias and MSE.

2.2 The behavior of bias and mse of \(\hat{\rho} \) in model \(M_\beta \)

As in above section, we give the exact formulas of bias and MSE of estimator \(\hat{\rho} \). Also, we derive the expressions of bias-robustness function and MSE-robustness function.

So, in model \(M_\beta \), the density \(h(z) \) is written

\[h(z) = \beta. (n - 1). |1 - z|^{\beta(n-1)-1}. \]

The expressions of bias and MSE of estimator \(\hat{\rho} \) take the following forms

\[b_\beta(\rho) = \frac{(1 + \beta)}{1 + \beta(n - 1)}. (1 - \rho), \forall n \geq 1. \]

\[MSE_\beta(\rho) = \frac{2(1 + \beta)^2}{(1 + \beta(n - 1))(2 + \beta(n - 1))}. (1 - \rho)^2, \forall n \geq 1. \]

We present in Tables 3 and 4 the exact values of bias and MSE respectively of estimator \(\hat{\rho} \) as function of \(\beta \) and \(\rho \) for different smaller values of size \((n=5, 10, \text{and} 20) \). Here, the values are computed using a formula (8) and (9).
Table 3. Values of the $b_\beta(\rho)$ for $n = 5, 10$ and 20.

<table>
<thead>
<tr>
<th>β</th>
<th>$n = 5$</th>
<th></th>
<th></th>
<th>$n = 10$</th>
<th></th>
<th></th>
<th>$n = 20$</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\rho = 0$</td>
<td>$\rho = 0.4$</td>
<td>$\rho = 0.9$</td>
<td>$\rho = 0$</td>
<td>$\rho = 0.4$</td>
<td>$\rho = 0.9$</td>
<td>$\rho = 0$</td>
<td>$\rho = 0.4$</td>
<td>$\rho = 0.9$</td>
</tr>
<tr>
<td>b_{max}</td>
<td>1</td>
<td>0.6</td>
<td>0.1</td>
<td>1</td>
<td>0.6</td>
<td>0.1</td>
<td>1</td>
<td>0.6</td>
<td>0.1</td>
</tr>
<tr>
<td>0.01</td>
<td>0.9711</td>
<td>0.5826</td>
<td>0.0971</td>
<td>0.9118</td>
<td>0.5559</td>
<td>0.0918</td>
<td>0.8487</td>
<td>0.50096</td>
<td>0.0848</td>
</tr>
<tr>
<td>0.1</td>
<td>0.7857</td>
<td>0.4714</td>
<td>0.0786</td>
<td>0.5789</td>
<td>0.3474</td>
<td>0.0579</td>
<td>0.3793</td>
<td>0.2276</td>
<td>0.0379</td>
</tr>
<tr>
<td>0.2</td>
<td>0.6667</td>
<td>0.4000</td>
<td>0.0667</td>
<td>0.4286</td>
<td>0.2571</td>
<td>0.0429</td>
<td>0.2500</td>
<td>0.1500</td>
<td>0.0250</td>
</tr>
<tr>
<td>0.4</td>
<td>0.5385</td>
<td>0.3231</td>
<td>0.0538</td>
<td>0.3043</td>
<td>0.1826</td>
<td>0.0304</td>
<td>0.1628</td>
<td>0.0977</td>
<td>0.0163</td>
</tr>
<tr>
<td>0.6</td>
<td>0.4706</td>
<td>0.2824</td>
<td>0.0471</td>
<td>0.2500</td>
<td>0.1500</td>
<td>0.0250</td>
<td>0.1290</td>
<td>0.0774</td>
<td>0.0129</td>
</tr>
<tr>
<td>0.8</td>
<td>0.4286</td>
<td>0.2571</td>
<td>0.0429</td>
<td>0.2195</td>
<td>0.1317</td>
<td>0.0220</td>
<td>0.1111</td>
<td>0.0667</td>
<td>0.0111</td>
</tr>
<tr>
<td>1.0</td>
<td>0.4000</td>
<td>0.2400</td>
<td>0.0400</td>
<td>0.2000</td>
<td>0.1200</td>
<td>0.0200</td>
<td>0.1000</td>
<td>0.0600</td>
<td>0.0100</td>
</tr>
<tr>
<td>1.6</td>
<td>0.3514</td>
<td>0.2108</td>
<td>0.0351</td>
<td>0.1688</td>
<td>0.1013</td>
<td>0.0169</td>
<td>0.0828</td>
<td>0.0497</td>
<td>0.0083</td>
</tr>
<tr>
<td>2.0</td>
<td>0.3333</td>
<td>0.2000</td>
<td>0.0333</td>
<td>0.1579</td>
<td>0.0947</td>
<td>0.0158</td>
<td>0.0769</td>
<td>0.0462</td>
<td>0.0077</td>
</tr>
<tr>
<td>3.0</td>
<td>0.3077</td>
<td>0.1846</td>
<td>0.0308</td>
<td>0.1429</td>
<td>0.0857</td>
<td>0.0143</td>
<td>0.0690</td>
<td>0.0414</td>
<td>0.0069</td>
</tr>
<tr>
<td>4.0</td>
<td>0.2941</td>
<td>0.1765</td>
<td>0.0294</td>
<td>0.1351</td>
<td>0.0811</td>
<td>0.0135</td>
<td>0.0649</td>
<td>0.0390</td>
<td>0.0065</td>
</tr>
<tr>
<td>6.0</td>
<td>0.2800</td>
<td>0.1680</td>
<td>0.0280</td>
<td>0.1273</td>
<td>0.0764</td>
<td>0.0127</td>
<td>0.0609</td>
<td>0.0365</td>
<td>0.0061</td>
</tr>
<tr>
<td>8.0</td>
<td>0.2727</td>
<td>0.1636</td>
<td>0.0273</td>
<td>0.1233</td>
<td>0.0740</td>
<td>0.0123</td>
<td>0.0588</td>
<td>0.0353</td>
<td>0.0059</td>
</tr>
<tr>
<td>10</td>
<td>0.2683</td>
<td>0.1610</td>
<td>0.0268</td>
<td>0.1209</td>
<td>0.0725</td>
<td>0.0121</td>
<td>0.0576</td>
<td>0.0346</td>
<td>0.0058</td>
</tr>
<tr>
<td>b_{min}</td>
<td>0.25</td>
<td>0.15</td>
<td>0.025</td>
<td>0.1111</td>
<td>0.0666</td>
<td>0.0111</td>
<td>0.0526</td>
<td>0.0315</td>
<td>0.0052</td>
</tr>
</tbody>
</table>
Table 4. Values of the $MSE_\beta(\rho)$ for $n = 5, 10$ and 20.

<table>
<thead>
<tr>
<th>β</th>
<th>$n = 5$</th>
<th></th>
<th></th>
<th>$n = 10$</th>
<th></th>
<th></th>
<th>$n = 20$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\rho = 0$</td>
<td>$\rho = 0.4$</td>
<td>$\rho = 0.9$</td>
<td>$\rho = 0$</td>
<td>$\rho = 0.4$</td>
<td>$\rho = 0.9$</td>
<td>$\rho = 0$</td>
<td>$\rho = 0.4$</td>
</tr>
<tr>
<td>M_{max}</td>
<td>1</td>
<td>0.6</td>
<td>0.1</td>
<td>1</td>
<td>0.6</td>
<td>0.1</td>
<td>1</td>
<td>0.6</td>
</tr>
<tr>
<td>0.01</td>
<td>0.9616</td>
<td>0.342</td>
<td>0.0096</td>
<td>0.8956</td>
<td>0.3224</td>
<td>0.0090</td>
<td>0.7829</td>
<td>0.2818</td>
</tr>
<tr>
<td>0.1</td>
<td>0.7202</td>
<td>0.2593</td>
<td>0.0072</td>
<td>0.4392</td>
<td>0.1581</td>
<td>0.0044</td>
<td>0.2140</td>
<td>0.0770</td>
</tr>
<tr>
<td>0.2</td>
<td>0.5714</td>
<td>0.2057</td>
<td>0.0057</td>
<td>0.2707</td>
<td>0.0974</td>
<td>0.0027</td>
<td>0.1034</td>
<td>0.0372</td>
</tr>
<tr>
<td>0.6</td>
<td>0.3422</td>
<td>0.1232</td>
<td>0.0034</td>
<td>0.1081</td>
<td>0.0389</td>
<td>0.0011</td>
<td>0.0308</td>
<td>0.0111</td>
</tr>
<tr>
<td>0.4</td>
<td>0.4188</td>
<td>0.1508</td>
<td>0.0042</td>
<td>0.1522</td>
<td>0.0548</td>
<td>0.0015</td>
<td>0.0475</td>
<td>0.0171</td>
</tr>
<tr>
<td>0.8</td>
<td>0.2967</td>
<td>0.1068</td>
<td>0.0030</td>
<td>0.0859</td>
<td>0.0309</td>
<td>0.0009</td>
<td>0.0233</td>
<td>0.0084</td>
</tr>
<tr>
<td>1</td>
<td>0.2667</td>
<td>0.0960</td>
<td>0.0027</td>
<td>0.0727</td>
<td>0.0262</td>
<td>0.0007</td>
<td>0.0190</td>
<td>0.0069</td>
</tr>
<tr>
<td>1.6</td>
<td>0.2175</td>
<td>0.0783</td>
<td>0.0022</td>
<td>0.0535</td>
<td>0.0193</td>
<td>0.0005</td>
<td>0.0133</td>
<td>0.0048</td>
</tr>
<tr>
<td>2</td>
<td>0.2000</td>
<td>0.0720</td>
<td>0.0020</td>
<td>0.0474</td>
<td>0.0171</td>
<td>0.0005</td>
<td>0.0115</td>
<td>0.0042</td>
</tr>
<tr>
<td>3</td>
<td>0.1758</td>
<td>0.0633</td>
<td>0.0018</td>
<td>0.0394</td>
<td>0.0142</td>
<td>0.0004</td>
<td>0.0094</td>
<td>0.0034</td>
</tr>
<tr>
<td>4</td>
<td>0.1634</td>
<td>0.0588</td>
<td>0.0016</td>
<td>0.0356</td>
<td>0.0128</td>
<td>0.0004</td>
<td>0.0083</td>
<td>0.0030</td>
</tr>
<tr>
<td>6</td>
<td>0.1508</td>
<td>0.0543</td>
<td>0.0015</td>
<td>0.0318</td>
<td>0.0115</td>
<td>0.0003</td>
<td>0.0073</td>
<td>0.0026</td>
</tr>
<tr>
<td>8</td>
<td>0.1444</td>
<td>0.0520</td>
<td>0.0014</td>
<td>0.0300</td>
<td>0.0108</td>
<td>0.0003</td>
<td>0.0069</td>
<td>0.0025</td>
</tr>
<tr>
<td>10</td>
<td>0.1405</td>
<td>0.0506</td>
<td>0.0014</td>
<td>0.0289</td>
<td>0.0104</td>
<td>0.0003</td>
<td>0.0066</td>
<td>0.0024</td>
</tr>
<tr>
<td>M_{min}</td>
<td>0.1250</td>
<td>0.0450</td>
<td>0.0012</td>
<td>0.0246</td>
<td>0.0088</td>
<td>0.0002</td>
<td>0.0055</td>
<td>0.0019</td>
</tr>
</tbody>
</table>
Some properties obtained in the model M_β are given in the following comments:

Comment 1. The inverse situation is presented in model M_β to that observed in model M_α. The bias and MSE of estimator $\tilde{\rho}$ are a decreasing functions of β. The two criterions increase strongly when $\beta \in (0,1]$ but decrease slowly when $\beta \in (1, +\infty[$.

Comment 2. When β is close to zero, the bias and MSE of estimator $\tilde{\rho}$ tend to value $b_{\text{max}} = M_{\text{max}} = (1 - \rho)$.

Comment 3. When α tend to infinity,

\[
\begin{align*}
 b_\alpha(\rho) & \rightarrow b_{\text{min}} = \frac{(1 - \rho)}{n - 1}, \\
 \text{MSE}_\alpha(\rho) & \rightarrow M_{\text{min}} = \frac{2(1 - \rho)^2}{(n - 1)^2}.
\end{align*}
\]

After computations, we obtain the following expressions of bias and MSE robustness functions:

\[
\begin{align*}
 rb_{(0,1]}(\rho) &= b_{\text{max}} - b_1(\rho) = \frac{(n-2)}{n} (1 - \rho), \\
 rb_{(1, +\infty]}(\rho) &= b_1(\rho) - b_{\text{min}} = \frac{(n-2)}{n(n-1)} (1 - \rho), \\
 rm_{(0,1]}(\rho) &= M_{\text{max}} - \text{MSE}_1(\rho) = \frac{n(n+1) - 8}{n(n+1)} (1 - \rho)^2, \\
 rb_{(1, +\infty]}(\rho) &= \text{MSE}_1(\rho) - M_{\text{min}} = \frac{6n^2 - 9n - 4}{(n-1)(n^2 + n)} (1 - \rho)^2.
\end{align*}
\]
Robustness of estimation of first-order autoregressive ...

This leads to

\[rb_{(1, +\infty)}(\rho) < rb_{(0, 1)}(\rho), \forall n. \]

\[rm_{(1, +\infty)}(\rho) < rm_{(0, 1)}(\rho), \forall n \geq 4. \]

In this situation, we can say that the estimator \(\hat{\rho} \) is more stable for \(\beta \in (1, +\infty] \) than for \(\beta \in (0, 1] \) with respect to bias and MSE.

3. Conclusions

The bias and the MSE of estimator \(\hat{\rho} \) present a very small oscillation under model \(M_\alpha \) when \(\alpha \in (0, 1] \) than for \(\alpha \in (1, +\infty[\).

In model \(M_\beta \), we get completely opposite behavior to that obtained in model \(M_\alpha \). We can conclude that the estimator \(\hat{\rho} \) has a good properties (more robust) in model \(M_\alpha \) for \(\alpha \in (0, 1] \) and in model \(M_\beta \) for \(\beta \in (1, +\infty[\) with respect to bias and mean square error.

References

Received 17 March 2009
Revised 19 August 2009