DECOMPOSITION OF COMPLETE BIPARTITE MULTIGRAPHS INTO PATHS AND CYCLES HAVING k EDGES

SHANMUGASUNDARAM JEEVAD OSS

AND

APPU MUTHUSAMY

Periyar University
Salem, Tamil Nadu
INDIA

e-mail: raazdoss@gmail.com
ambdu@yahoo.com

Abstract

We give necessary and sufficient conditions for the decomposition of complete bipartite multigraph $K_{m,n}(\lambda)$ into paths and cycles having k edges. In particular, we show that such decomposition exists in $K_{m,n}(\lambda)$, when $\lambda \equiv 0 \pmod{2}$, $m, n \geq \frac{k}{2}$, $m + n > k$, and $k(p + q) = 2mn$ for $k \equiv 0 \pmod{2}$ and also when $\lambda \geq 3$, $\lambda m \equiv \lambda n \equiv 0 \pmod{2}$, $k(p + q) = \lambda mn$, $m, n \geq k$, (resp., $m, n \geq 3k/2$) for $k \equiv 0 \pmod{4}$ (respectively, for $k \equiv 2 \pmod{4}$). In fact, the necessary conditions given above are also sufficient when $\lambda = 2$.

Keywords: path, cycle, graph decomposition, multigraph.

2010 Mathematics Subject Classification: 05C38, 05C51.

1. Introduction

Unless stated otherwise all graphs considered here are finite, simple, and undirected. For the standard graph-theoretic terminology the readers are referred to [8]. A cycle of length m is called an m-cycle and it is denoted by C_m and a path of length m is called an m-path and it is denoted by P_{m+1}. A circuit (directed cycle) of length m is called an m-circuit and it is denoted by \overrightarrow{C}_m. Let K_m denote a complete graph on m vertices, $K_{m,n}$ denote a complete bipartite graph with
m and n vertices in the parts, and \(K_{m,n}^* \) denote a complete bipartite symmetric directed graph with m and n vertices in the parts. A graph whose vertex set is partitioned into sets \(V_1, \ldots, V_m \) such that the edge set is \(\bigcup_{i \neq j \in [m]} V_i \times V_j \) is called a complete m-partite graph denoted by \(K_{n_1, \ldots, n_m} \), where \(|V_i| = n_i \) for all i. For any integer \(\alpha > 0 \), \(\alpha G \) denotes a union of \(\alpha \) edge-disjoint copies of \(G \). The \(\lambda \)-multiplication of \(G \), denoted \(G(\lambda) \), is the multigraph obtained from a graph \(G \) by replacing each edge with \(\lambda \) edges. For a graph \(G \), \(G - I \) denotes the graph \(G \) with a 1-factor \(I \) removed. Let \(x_0x_1 \cdots x_{k-2}x_{k-1} \) and \((x_0x_1 \cdots x_{k-1}x_0) \) respectively denote the path \(P_k \) and the cycle \(C_k \) with vertices \(x_0, x_1, \ldots, x_{k-1} \) and edges \(x_0x_1, x_1x_2, \ldots, x_{k-2}x_{k-1}, x_{k-1}x_0 \).

By a decomposition of the graph \(G \), we mean a list of edge-disjoint subgraphs of \(G \) whose union is \(G \) (ignoring isolated vertices). For the graph \(G \), if \(E(G) \) can be partitioned into \(E_1, \ldots, E_k \) such that the subgraph induced by \(E_i \) is \(H_i \), for all \(i, 1 \leq i \leq k \), then we say that \(H_1, \ldots, H_k \) decompose \(G \) and we write \(G = H_1 \oplus \cdots \oplus H_k \), since \(H_1, \ldots, H_k \) are edge-disjoint subgraphs of \(G \). For \(1 \leq i \leq k \), if \(H_i \cong H \), we say that \(G \) has a \(H \)-decomposition. If \(G \) has a decomposition into \(p \) copies of \(H_1 \) and \(q \) copies of \(H_2 \), then we say that \(G \) has a \(\{pH_1, qH_2\} \)-decomposition. If such a decomposition exists for all admissible pairs of \(p \) and \(q \) satisfying trivial necessary conditions, then we say that \(G \) has a full \(\{H_1, H_2\} \)-decomposition or \(G \) is fully \(\{H_1, H_2\} \)-decomposable.

Study on full \(\{H_1, H_2\} \)-decomposition of graphs is not new. Abueida, Daven, and Roblee [1, 3] completely determined the values of \(n \) for which \(K_n(\lambda) \) admits the \(\{pH_1, qH_2\} \)-decomposition such that \(H_1 \oplus H_2 \cong K_t \), when \(\lambda \geq 1 \) and \(|V(H_1)| = |V(H_2)| = t \), where \(t \in \{4, 5\} \). Let \(S_k \) denotes a star on \(k \) vertices, i.e. \(S_k = K_{1,k-1} \). Abueida and Daven [2] proved that there exists a \(\{pK_k, qS_{k+1}\} \)-decomposition of \(K_n \) for \(k \geq 3 \) and \(n \equiv 0, 1 \) (mod \(k \)). Abueida and O’Neil [4] proved that for \(k \in \{3, 4, 5\} \), the \(\{pC_k, qS_k\} \)-decomposition of \(K_n(\lambda) \) exists, whenever \(n \geq k + 1 \) except for the ordered triples \((k, n, \lambda) \in \{3, 4, 1\}, (4, 5, 1), (5, 6, 1), (5, 6, 2), (5, 6, 4), (5, 7, 1), (5, 8, 1) \}. Abueida and Daven [2] obtained necessary and sufficient conditions for the \(\{pC_4, q(2K_2)\} \)-decomposition of the Cartesian product and tensor product of paths, cycles, and complete graphs. Shyu [17] obtained a necessary and sufficient condition for the existence of a full \(\{P_5, C_4\} \)-decomposition of \(K_n \). Shyu [18] proved that \(K_n \) has a full \(\{P_4, S_4\} \)-decomposition if and only if \(n \geq 6 \) and \(3(p + q) = \binom{n}{2} \). Also he proved that \(K_n \) has a full \(\{P_k, S_k\} \)-decomposition with a restriction \(p \geq k/2 \), when \(k \) even (resp., \(p \geq k \), when \(k \) odd). Shyu [19] obtained a necessary and sufficient condition for the existence of a full \(\{P_4, K_3\} \)-decomposition of \(K_n \). Shyu [20] proved that \(K_n \) has a full \(\{C_4, S_5\} \)-decomposition if and only if \(4(p + q) = \binom{q}{2} \), \(q \neq 1 \), when \(n \) is odd and \(q \geq \max\{3, \lceil \frac{q}{4}\rceil \} \), when \(n \) is even. Shyu [21] proved that \(K_{m,n} \) has a full \(\{P_k, S_k\} \)-decomposition for some \(m \) and \(n \) and also obtained some necessary and sufficient condition for the existence of a full \(\{P_4, S_4\} \)-decomposition of
Chou et al. [9] proved that for a given triple \((p, q, r)\) of nonnegative integers, \(G\) decompose into \(p\) copies of \(C_4\), \(q\) copies of \(C_6\), and \(r\) copies of \(C_8\) such that \(4p + 6q + 8r = |E(G)|\) in the following two cases: (a) \(G = K_{m,n}\) with \(m\) and \(n\) both even and greater than four (b) \(G = K_{n,n} - I\), where \(n\) is odd. Chou and Fu [10] proved that the existence of a full \(\{C_4, C_2\}\)-decomposition of \(K_{2u,2v}\), where \(t/2 \leq u, v < t\), when \(t\) even (resp., \((t + 1)/2 \leq u, v \leq (3t - 1)/2\), when \(t\) odd) implies such decomposition in \(K_{2u,2v}\), where \(m, n \geq t\) (resp., \(m, n \geq (3t + 1)/2\)).

The authors [11] reduced the bounds of the sufficient conditions obtained by Chou and Fu [10] for the existence of a full \(\{C_4, C_2\}\)-decomposition of \(K_{2u,2v}\), when \(t > 2\). Lee and Chu [13, 14] obtained a necessary and sufficient condition for the existence of a full \(\{P_k, S_k\}\)-decomposition of \(K_{n,n}\) and \(K_{m,n}\). Lee and Lin [15] obtained a necessary and sufficient condition for the existence of a full \(\{pC_k, qS_{k+1}\}\)-decomposition of \(K_{n,n} - I\). Abueida and Lian [7] obtained necessary and sufficient conditions for the existence of a \(\{pC_k, qS_{k+1}\}\)-decomposition of \(K_n\) for some \(n\). Recently, the authors [12] obtained some necessary and sufficient conditions for the existence of a full \(\{P_{k+1}, C_k\}\)-decomposition of \(K_n\) and \(K_{m,n}\).

In this paper, we study only the existence of a full \(\{P_{k+1}, C_k\}\)-decomposition of \(K_{m,n}(\lambda)\), we abbreviate the notation for such decomposition as \((k; p, q)\)-decomposition of \(K_{m,n}(\lambda)\). The obvious necessary condition for such existence is \(k(p + q) = |E(K_{m,n}(\lambda))|\). As we consider only cases where all vertices are of even degree, the case \(p \neq 1\) is also obviously necessary, since the presents of a single path in the decomposition would give two vertices of odd degree and the resulting graph is not cycle decomposable. Call the situation with \(k(p + q) = |E(K_{m,n}(\lambda))|\), all vertex degrees are even, and \(p \neq 1\) the good case.

We prove that in the good case \(K_{m,n}(\lambda)\) has a \((k; p, q)\)-decomposition, when \(\lambda \equiv 0\) (mod 2), \(m, n \geq \frac{k}{2}\), \(m + n > k\), and \(k(p + q) = 2mn\) for \(k \equiv 0\) (mod 2). Further, we show that if \(K_{m,n}(\lambda)\), \(\lambda \geq 3, k \equiv 0\) (mod 4) (resp., \(k \equiv 2\) (mod 4)) has a \((k; p, q)\)-decomposition in the good case with \(k/2 \leq m, n \leq k\), (resp., \(k/2 \leq m, n \leq 3k/2\)) then such decomposition also exists in the good case, when \(\lambda \geq 3; m, n \geq k\) (resp., \(m, n \geq 3k/2\)).

To prove our results, we use the following:

Theorem 1 [12]. Let \(p\) and \(q\) be nonnegative integers and \(k, m, n\) be positive even integers such that \(k \equiv 0\) (mod 4). For \(m \leq n\), the graph \(K_{m,n}\) has a \((k; p, q)\)-decomposition if and only if \(m \geq \frac{k}{2}\), \(n \geq \lceil \frac{k+1}{2}\rceil\), \(k(p + q) = mn\), and \(p \neq 1\).

Theorem 2 [22]. \(K^*_m\) has a \(\overrightarrow{C_k}\)-decomposition if and only if \(m \geq \frac{k}{2}\), \(n \geq \frac{k}{2}\), and \(k\) divides \(2mn\).

By considering the underlying graph of \(K^*_m\), we have the following from Theorem 2.
Theorem 3. The graph \(K_{m,n}(2) \) has a \(C_k \)-decomposition if and only if \(m \geq \frac{k}{2} \), \(n \geq \frac{k}{2} \), and \(k \) divides \(2mn \).

2. \((k;p,q)\)-Decomposition of \(K_{m,n}(\lambda) \) when \(k \equiv 0(\text{mod } 2)\)

In this section, we investigate the existence of \((k;p,q)\)-decomposition of \(K_{m,n}(\lambda) \), when \(k \equiv 0(\text{mod } 2) \).

Construction 4. Let \(C_\lambda \) and \(C_\mu \) be two cycles of length \(k \), where \(C_\lambda = (x_1x_2 \cdots x_kx_1) \) and \(C_\mu = (y_1y_2 \cdots y_ky_1) \). If \(v \) is a common vertex of \(C_\lambda \) and \(C_\mu \) such that at least one neighbour of \(v \) from each cycle (say, \(x_i \) and \(y_j \)) does not belong to the other cycle, then we have two edge-disjoint paths of length \(k \), say \(P_\lambda \) and \(P_\mu \) from \(C_\lambda \) and \(C_\mu \) as follows (see Figure 1), where \(P_\lambda = (C_\lambda - vx_i) \cup vy_j, P_\mu = (C_\mu - vy_j) \cup vx_i \).

![Figure 1](image)

Remark 5. Let \(k \in \mathbb{N} \). If \(G \) and \(H \) have a \((k;p,q)\)-decomposition, then \(G \oplus H \) has such a decomposition.

Lemma 6. Let \(p, q \) be nonnegative integers and \(\{k,m,n\} \in \mathbb{N} \) such that \(k \equiv 0(\text{mod } 2) \) and \(m + n > k \). The graph \(K_{m,n}(2) \) has a \((k;p,q)\)-decomposition if and only if \(m, n \geq k/2, k(p+q) = 2mn \), and \(p \neq 1 \).

Proof. Necessity. Conditions \(m, n \geq k/2, k(p+q) = 2mn \), and \(p \neq 1 \) are trivial.

Sufficiency. Let \(k \equiv 0(\text{mod } 2) \). In order to have a \(C_k \)-decomposition in \(K_{m,n}(2) \), we can always find \(u, v \) such that \(k = 2uv, m = ru, n = sv, r \geq v, \) and \(s \geq u \) where \(r \) and \(s \) are positive integers. We denote the vertices of the partite sets of \(K_{ru,sv} \) by \(x_i, 0 \leq i \leq ru - 1 \) and \(y_j, 0 \leq j \leq sv - 1 \). By Theorem 3, the
Now we construct the required number of \(x \)- and \(C \)-indices of \(K \), where the indices of \(x \) are to be taken with modulo \(ru \), and those of \(y \) with modulo \(sv \). Now we construct the required number of \(P_{k+1} \) from the \(C_k \)-decomposition given above, in two cases.

Case 1: \(p \) is even. For a fixed \(\mu \) and \(0 \leq \lambda \leq s - 1 \), we can have \(C_{\lambda \mu} \) and \(C_{(\lambda + 1)\mu} \) as above. Since \(x_{\mu}y_{\lambda v} \in E(C_{\lambda \mu}) \), \(x_{\mu}y_{(\lambda + u + v - 1)} \in E(C_{(\lambda + 1)\mu}) \), \(y_{\lambda v} \notin V(C_{(\lambda + 1)\mu}) \), and \(y_{(\lambda + u + v - 1)} \notin V(C_{\lambda \mu}) \), we have two edge-disjoint paths of length \(k \), say \(P_{\lambda \mu} \) and \(P_{(\lambda + 1)\mu} \) from \(C_{\lambda \mu} \) and \(C_{(\lambda + 1)\mu} \) as follows (see Figure 2).

\[
P_{\lambda \mu} = (C_{\lambda \mu} - x_{\mu}y_{\lambda v}) \cup x_{\mu}y_{(\lambda + u + v - 1)},
\]

\[
P_{(\lambda + 1)\mu} = (C_{(\lambda + 1)\mu} - x_{\mu}y_{(\lambda + u + v - 1)}) \cup x_{\mu}y_{\lambda v}.
\]

Similarly, we can find pairs of paths of length \(k \) from the pairs of cycles \(C_{\lambda \mu} \) and \(C_{(\lambda + 1)\mu} \), where \(0 \leq \lambda \leq s - 2 \) or \(s - 1 \) and \(0 \leq \mu \leq r - 1 \). Hence the graph \(K_{m,n}(2) \) has the desired decomposition.

Now for a fixed \(\lambda \) and \(0 \leq \mu \leq r - 1 \), we can have \(C_{\lambda \mu} \) and \(C_{(\lambda + 1)\mu} \) as above. Since \(x_{\mu p}y_{(\lambda + p)q - 1} \in E(C_{\lambda \mu}) \), \(x_{(\mu + q + 1)p - 1}y_{(\lambda + p)q - 1} \in E(C_{(\lambda + 1)\mu}) \), \(x_{\mu p} \notin V(C_{(\lambda + 1)\mu}) \), and \(x_{(\mu + q + 1)p - 1} \notin V(C_{\lambda \mu}) \), we have two edge-disjoint paths of length \(k \), say \(P_{\lambda \mu} \) and \(P_{\lambda(\mu + 1)} \) from \(C_{\lambda \mu} \) and \(C_{(\lambda + 1)\mu} \) as follows (see Figure 3).

\[
P_{\lambda \mu} = (C_{\lambda \mu} - x_{\mu p}y_{(\lambda + p)q - 1}) \cup x_{(\mu + q + 1)p - 1}y_{(\lambda + p)q - 1},
\]

\[
P_{\lambda(\mu + 1)} = (C_{\lambda(\mu + 1)} - x_{(\mu + q + 1)p - 1}y_{(\lambda + p)q - 1}) \cup x_{\mu p}y_{(\lambda + p)q - 1}.
\]
In Construction 4, we have three edge-disjoint paths of length \(k \), where \(P \) divides 2 or \(\mu \) divides \(C \). Similarly, we can find pairs of paths of length \(k \) from the pairs of cycles \(C_{\lambda \mu} \) and \(C_{\lambda(\mu+1)} \), where \(\mu = 0, 2, \ldots, r-2 \) or \(r-1 \). Hence we have the desired paths.

Case 2: \(p \) is odd. Fixing \(v = \gcd(n,k/2) \), we have \(u = k/2v \), \(s = n/v \). Since \(k \) divides \(2mn \), i.e., \(2uv \) divides \(2mn \) and \(v \) divides \(n \), we have \(r = m/u \).

Subcase 2a: \((v + 2)u - 1 \leq m \) and \(v + 2 \leq r \). Since \(r \geq 3 \) and \(s \geq 1 \), we can have \(C_{00}, C_{01}, \) and \(C_{02} \) (see Figure 4). By applying a procedure similar to Construction 4, we have three edge-disjoint paths of length \(k \), say \(P_{00}, P_{01}, \) and \(P_{02} \) from \(C_{00}, C_{01}, \) and \(C_{02} \) as follows (see Figure 5).
Decomposition of Complete Bipartite Multigraphs into Paths ...

\[P_{00} = (C_{00} - x_0y_{uv-1}) \cup x_{(v+1)u-1}y_{uv-1}, \]
\[P_{01} = (C_{01} - x_{(v+1)u-1}y_{uv-1}) \cup x_{(v+2)u-1}y_{uv-1}, \]
\[P_{02} = (C_{02} - x_{(v+2)u-1}y_{uv-1}) \cup x_0y_{uv-1}. \]

By applying a procedure similar to Case 1, the remaining pairs of cycles \(C_{\lambda \mu} \oplus C_{\lambda(\mu+1)} \), \((\lambda, \mu), (\lambda, \mu + 1) \neq (0,0), (0,1), (0,2)\) decomposes into pairs of paths. Hence the graph \(K_{m,n}^{(2)} \) has the desired decomposition.

Subcase 2b: \((u + 2)v - 1 \leq n \) and \(u + 2 \leq s \). Since \(r \geq 1 \) and \(s \geq 3 \), we can have \(C_{00}, C_{10}, \) and \(C_{20} \) (see Figure 6). By applying a procedure similar to
Construction 4, we have three edge-disjoint paths of length k, say P_{00}, P_{10}, and P_{20} from C_{00}, C_{10}, and C_{20} as follows (see Figure 7).

$$P_{00} = (C_{00} - x_0y_{uv-1}) \cup x_0y_{(u+1)v-1},$$
$$P_{10} = (C_{10} - x_0y_{(u+1)v-1}) \cup x_0y_{(u+2)v-1},$$
$$P_{20} = (C_{20} - x_0y_{(u+2)v-1}) \cup x_0y_{uv-1}.$$

By applying a procedure similar to Case 1, the remaining pairs of cycles $C_{\lambda\mu} \oplus C_{(\lambda+1)\mu}$ (λ, μ), ($\lambda + 1, \mu$) \neq $(0, 0), (1, 0), (2, 0)$ decomposes into pairs of paths. Hence the graph $K_{m,n}(2)$ has the desired decomposition.

Subcase 2c: $(v + 1)u - 1 \leq m$, $(u + 1)v - 1 \leq n$, $u + 1 \leq s$, and $v + 1 \leq r$, m or $n \neq k/2$. Since $r, s \geq 2$ we can have C_{00}, C_{10}, and C_{11}. By applying a procedure similar to Case 1, we have two edge-disjoint paths of length k, say P_{10} and P_{11} from C_{10} and C_{11} as follows:

$$P_{10} = (C_{10} - x_0y_{(u+1)v-1}) \cup x_{(v+1)u-1}y_{(u+1)v-1},$$
$$P_{11} = (C_{11} - x_{(v+1)u-1}y_{(u+1)v-1}) \cup x_0y_{(u+1)v-1}.$$

Now consider C_{00} and P_{11} (see Figure 8); since $x_0y_{uv-1} \in E(C_{00})$, $x_{(u+1)v-2}y_{uv-1}$ $\notin V(C_{00})$, and $x_0 \in V(P_{11})$, we have two edge-disjoint paths of length k, say P_{00} and P_{11} from C_{00} and P_{11} as follows (see Figure 9).

$$P_{00} = (C_{00} - x_0y_{uv-1}) \cup x_{(v+1)u-2}y_{uv-1},$$
$$P_{11} = (P_{11} - x_{(v+1)u-2}y_{uv-1}) \cup x_0y_{uv-1}.$$

By applying a procedure similar to Case 1, the remaining pairs of cycles both $C_{\lambda\mu} \oplus C_{(\lambda+1)\mu}$ and $C_{\lambda\mu} \oplus C_{(\mu+1)\lambda}$ (λ, μ), ($\lambda + 1, \mu$) ($\lambda, \mu + 1$) \neq $(0, 0), (0, 1), (1, 1)$
decomposes into pairs of paths. Hence the graph $K_{m,n}(2)$ has the desired decomposition.

Subcase 2d: $m = k/2 + 1$ and $n = k/2$. When $m = k/2 + 1$ and $n = k/2$, we have $s = p = 1$ and $r = q + 1$. Since $\lambda = 2$ and $0 \leq \mu \leq r - 1$, we can have C_{00} and C_{01} (see Figure 10). By applying a procedure similar to Case 1, we have two edge-disjoint paths of length k, say P_{00} and P_{01} from C_{00} and C_{01} as follows (see Figure 11).

\[
P_{00} = (C_{00} - x_0y_2a-3) \cup x_2a-2y_2a-3,
\]
\[
P_{01} = (C_{01} - x_2a-2y_2a-3) \cup x_0y_2a-3.
\]
Let \(a = r + 1/2 \). Now we consider \(\mathbb{P}_{00} \) and \(\mathbb{C}_0a \) (see Figure 12). Since \(x_{2a-1}y_{a-2} \in E(C_{a0}) \), \(x_{a-1}y_{a-2} \in E(\mathbb{P}_{00}) \), and \(x_{a-1} \notin V(C_{a0}) \) we have two edge-disjoint paths of length \(k \), say \(\mathbb{P}_{0a} \) and \(\mathbb{P}_{00} \) from \(\mathbb{C}_0a \) and \(\mathbb{P}_{00} \) as follows (see Figure 13).

\[
\begin{align*}
&x_0 \quad y_0 \quad x_1 \quad y_1 \quad x_{2a-4} \quad y_{2a-4} \quad x_{2a-3} \quad y_{2a-3} \quad x_{2a-2} \\
&x_1 \quad y_0 \quad x_2 \quad y_1 \quad x_{2a-3} \quad y_{2a-4} \quad x_{2a-2} \quad y_{2a-3} \quad x_0
\end{align*}
\]

Figure 11. \(\mathbb{P}_{00} \cup \mathbb{P}_{01} \).

\[
\begin{align*}
&x_0 \quad y_0 \quad x_1 \quad y_1 \quad x_{a-2} \quad y_{a-2} \quad x_{a-1} \quad y_{a-1} \quad x_{2a-3} \quad y_{2a-3} \quad x_{2a-2} \\
&x_a \quad y_0 \quad x_{a+1} \quad y_1 \quad x_{2a-2} \quad y_{a-2} \quad x_0 \quad y_{2a-4} \quad x_{a-2} \quad y_{2a-3}
\end{align*}
\]

Figure 12. \(\mathbb{C}_0 \cup \mathbb{C}_1 \).

\[
\begin{align*}
&x_0 \quad y_0 \quad x_1 \quad y_1 \quad x_{a-2} \quad y_{a-2} \quad x_{a-1} \quad y_{a-1} \quad x_{2a-3} \quad y_{2a-3} \quad x_{2a-2} \\
&x_a \quad y_0 \quad x_{a+1} \quad y_1 \quad x_{2a-2} \quad y_{a-2} \quad x_0 \quad y_{2a-4} \quad x_{a-2} \quad y_{2a-3}
\end{align*}
\]

Figure 13. \(\mathbb{P}_{00} \cup \mathbb{P}_{01} \).

By applying a procedure similar to Case 1, the remaining pairs of cycles \(\mathbb{C}_{0\mu} \) and \(\mathbb{C}_{0(\mu+1)} \), \(2 \leq \mu \neq a \leq r - 1 \) decomposes into pairs of paths. Hence the graph \(K_{m,n}(2) \) has the desired decomposition.

\[\blacksquare\]

Theorem 7. Let \(p, q \) be nonnegative integers and \(\{k, m, n, \lambda\} \in \mathbb{N} \) such that \(k \equiv \lambda \equiv 0 \) (mod 2), \(m+n > k \geq 4 \), and \(k \) divides \(2mn \). If \(m, n \geq k/2 \), \(k(p+q) = \lambda mn \), and \(p \neq 1 \), then the graph \(K_{m,n}(\lambda) \) has a \((k;p,q)\)-decomposition.
Theorem 9. Let \(\lambda \geq 3 \). In this section, we investigate the existence of a \((k; p, q)\)-decomposition of \(K_{m,n}(\lambda)\) when \(\lambda \equiv k \equiv 0 \pmod{4}\). By Lemma 6 and Remark 5, the graph \((\lambda/2)K_{m,n}(2)\) has a \((k; p, q)\)-decomposition. Hence the graph \(K_{m,n}(\lambda)\) has the desired decomposition.

Remark 8.

1. Let \(k, m, n\) be positive even integers such that \(k \geq 4\). If the graph \(K_{m,n}(\lambda)\) has a \((k; p, q)\)-decomposition, then for every positive integer \(x\), the graph \(K_{m,n}(x\lambda)\) has a \((k; p, q)\)-decomposition.

2. Let \(k, m, n\) be positive even integers such that \(k \geq 4\). If the graph \(K_{m,n}(\lambda)\) has a \((k; p, q)\)-decomposition, then for all positive integers \(r\) and \(s\), the graph \(K_{rm,sn}(\lambda)\) has a \((k; p, q)\)-decomposition.

3. Let \(k, n_1, n_2, \ldots, n_m\) be positive even integers such that \(k \geq 4\). If the graph \(K_{n_i,n_j}(\lambda)\), for \(1 \leq i \neq j \leq m\) has a \((k; p, q)\)-decomposition, then the graph \(K_{n_1, n_2, \ldots, n_m}(\lambda)\) has a \((k; p, q)\)-decomposition.

3. \((k; p, q)\)-Decomposition of \(K_{m,n}(\lambda)\), When \(\lambda \geq 3\)

In this section, we investigate the existence of a \((k; p, q)\)-decomposition of \(K_{m,n}(\lambda)\), when \(\lambda \geq 3\) and \(\lambda m \equiv \lambda n \equiv k \equiv 0 \pmod{2}\).

Theorem 9. Let \(\{k, m, n, \lambda\} \in \mathbb{N}\) and \(i, j\) be nonnegative integers such that \(\lambda \geq 3\), \(\lambda m \equiv \lambda n \equiv 0 \pmod{2}\), and \(k \equiv 0 \pmod{4}\). If \(K_{\frac{k}{2} + i, \frac{k}{2} + j}(\lambda)\), \(0 \leq i, j \leq k/2\) has a \((k; p, q)\)-decomposition, then the graph \(K_{m,n}(\lambda)\), where \(m, n \geq k\), has a \((k; p, q)\)-decomposition.

Proof. By the hypothesis, let \(m = tk + x\) and \(n = sk + y\), where \(t\) and \(s\) are positive integers, \(x\) and \(y\) are nonnegative integers such that \(0 \leq x, y < k\).

When \(x = y = 0\), we can write \(K_{m,n}(\lambda) = K_{tk,sk}(\lambda) = \lambda tsK_{k,k}\). When \(x = y = k/2\), we can write

\[
K_{m,n}(\lambda) = K_{(t-1)k+\frac{k}{2},(s-1)k+\frac{k}{2}}(\lambda)
\]

\[
= K_{(t-1)k,(s-1)k}(\lambda) + K_{(t-1)k,\frac{k}{2}}(\lambda) + K_{\frac{k}{2},(s-1)k}(\lambda) + K_{\frac{k}{2},\frac{k}{2}}(\lambda)
\]

\[
= ((t-1)(s-1)\lambda)K_{k,k} + (t-1)\lambda K_{k,\frac{k}{2}} + (s-1)\lambda K_{\frac{k}{2},k} + \lambda K_{\frac{k}{2},\frac{k}{2}}.
\]

Since \(k \equiv 0 \pmod{4}\), by Theorem 1 the graphs \(K_{k,k}, K_{k,\frac{k}{2}}, K_{\frac{k}{2},k}\) and \(K_{\frac{k}{2},\frac{k}{2}}\) have a \((k; p, q)\)-decomposition. Hence the graph \(K_{m,n}(\lambda)\) has the desired decomposition.
Case 1: \(x = 0 \) and \(0 < y < k \). When \(0 < y < k/2 \), we can write

\[
K_{m,n}(\lambda) = K_{tk,(s-1)k+\frac{t}{2}+\frac{s}{2}+y}(\lambda) = K_{tk,(s-1)k+\frac{t}{2}}(\lambda) \oplus K_{tk,y+\frac{s}{2}}(\lambda) \\
= (t\lambda)K_{k,(s-1)k+\frac{t}{2}} \oplus tK_{k,y+\frac{s}{2}}(\lambda) \\
= (t(s-1)\lambda)K_{k,k} \oplus (t\lambda)K_{k,\frac{t}{2}} \oplus tK_{k,y+\frac{s}{2}}(\lambda).
\]

By Theorem 1, the graphs \(K_{k,k} \), \(K_{k,\frac{t}{2}} \), both have a \((k; p, q)\)-decomposition and by the hypothesis, the graph \(K_{k,y+\frac{s}{2}}(\lambda) \) has a \((k; p, q)\)-decomposition.

When \(k/2 \leq y < k \), we can write

\[
K_{m,n}(\lambda) = K_{tk,sk+y}(\lambda) = K_{tk,sk}(\lambda) \oplus K_{tk,y}(\lambda) \\
= (ts\lambda)K_{k,k} \oplus tK_{k,y}(\lambda).
\]

By Theorem 1, the graph \(K_{k,k} \) has a \((k; p, q)\)-decomposition and by the hypothesis, the graph \(K_{k,y}(\lambda) \) has a \((k; p, q)\)-decomposition. Hence the graph \(K_{m,n}(\lambda) \) has the desired decomposition.

Case 2: \(k/2 < x < k \) and \(k/2 \leq y < k \). We can write

\[
K_{m,n}(\lambda) = K_{tk+x,sk+y}(\lambda) = K_{tk,sk}(\lambda) \oplus K_{tk,y}(\lambda) \oplus K_{x,sk}(\lambda) \oplus K_{x,y}(\lambda) \\
= (ts\lambda)K_{k,k} \oplus tK_{k,y}(\lambda) \oplus sK_{x,k}(\lambda) \oplus K_{x,y}(\lambda),
\]

and \(\lambda mn/k = \lambda(tk+x)(sk+y)/k = \lambda(tsk+sx+ty)+\lambda xy/k \). By Theorem 1, the graph \(K_{k,k} \) has a \((k; p, q)\)-decomposition and by the hypothesis, the graphs \(K_{k,y}(\lambda) \) and \(K_{x,k}(\lambda) \) both have a \((k; p, q)\)-decomposition. Since \(k \) divides \(\lambda mn \), we have \(k \) divides \(\lambda xy \) and also \(k/2 \leq x, y < k \), then by the hypothesis, \(K_{x,y}(\lambda) \) has a \((k; p, q)\)-decomposition. Hence, by Remark 5, the graph \(K_{m,n}(\lambda) \) has the desired decomposition.

Case 3: \(0 < x, y \leq k/2 \). We can write

\[
K_{m,n}(\lambda) = K_{(t-1)k+(k+x),(s-1)k+(k+y)}(\lambda) \\
= K_{(t-1)k,(s-1)k}(\lambda) \oplus K_{(t-1)k,sk+y}(\lambda) \oplus K_{k,x+(s-1)k}(\lambda) \oplus K_{k,x,k+y}(\lambda) \\
= (t-1)(s-1)K_{k,k}(\lambda) \oplus (t-1)K_{k,k}(\lambda) \oplus (s-1)K_{k,x,k+y}(\lambda) \\
\oplus K_{k/2,k+y}(\lambda) \oplus K_{k/2,x,k+y}(\lambda) \\
= \lambda(t-1)(s-1)K_{k,k} \oplus (t-1)K_{k,k/2}(\lambda) \oplus (t-1)K_{k,k/2}(\lambda) \\
\oplus (s-1)K_{k/2,k}(\lambda) \oplus (s-1)K_{k/2,k}(\lambda) \oplus K_{k/2,k+y}(\lambda) \\
\oplus K_{k/2,x,k+2}(\lambda) \oplus K_{k/2,x,k/2+y}(\lambda),
\]

and \(\lambda mn/k = \lambda(tk+x)(sk+y)/k = \lambda k(t-1)(s-1) + \lambda(t-1)(k+y) + \lambda(k+x)(s-1) + \lambda(k+x+y) + (\lambda xy)/k \). By Theorem 1, the graphs \(K_{k,k} \) and \(K_{k/2,k} \) both
have a \((k; p, q)\)-decomposition and by the hypothesis, the graphs \(K_{k, k/2 + y}(\lambda)\), \(K_{k/2 + x, k}(\lambda)\), both have a \((k; p, q)\)-decomposition. Since \(k\) divides \(\lambda mn\) and \(k \equiv 0 \pmod{4}\), we have \(k\) divides \(\lambda(k/2 + x)(k/2 + y)\), \(2\) divides \(\lambda x\), and \(2\) divides \(\lambda y\) and \(k/2 \leq (k/2 + x), (k/2 + y) \leq k\). Then by the hypothesis, the graphs \(K_{k/2 + x, k/2 + y}(\lambda)\), \(K_{k/2, k}(\lambda)\), and \(K_{k/2, k/2 + y}(\lambda)\) have a \((k; p, q)\)-decomposition. The graph \(K_{k/2, k/2 + y}(\lambda)\) can be viewed as \(K_{k/2, k/2}(\lambda) \oplus K_{k/2, k/2 + y}(\lambda) = \lambda K_{k/2, k/2} \oplus K_{k/2, k/2 + y}(\lambda)\). By Theorem 2, the graph \(K_{k/2, k/2}\) has a \(C_k\)-decomposition and by the hypothesis, the graph \(K_{k/2, k/2 + y}(\lambda)\) has a \((k; p, q)\)-decomposition. Now for any pair of cycles of length \(k\), one from the graph \(\lambda K_{k/2, k/2}\), say \(C_\alpha\) and the other from the graph \(K_{k/2, k/2 + y}(\lambda)\), say \(C_\beta\), we have a common vertex in \(C_\alpha \oplus C_\beta\), say \(v\). Then by the Construction 4 we have two edge-disjoint paths of length \(k\) from \(C_\alpha\) and \(C_\beta\). By applying a similar procedure to the remaining pairs of cycles, we have edge-disjoint pairs of paths. Hence the graph \(K_{k/2, k + y}(\lambda)\) has a \((k; p, q)\)-decomposition. Therefore, by Remark 5, the graph \(K_{m, n}(\lambda)\) has the desired decomposition.

Case 4: \(0 < x \leq k/2\) and \(k/2 < y < k\). We can write

\[
K_{m, n}(\lambda) = K_{(t-1)k + (k + x), sk + y}(\lambda) = K_{(t-1)k, sk}(\lambda) \oplus K_{(t-1)k + (k + x), sk + y}(\lambda) = ((t - 1)s\lambda)K_{k, k} + (t - 1)K_{k, y}(\lambda) + sK_{k + x, k}(\lambda) + K_{k, k + y}(\lambda) + (t - 1)s\lambda)K_{k, k} \oplus (t - 1)K_{k, y}(\lambda) + sK_{k + x, k}(\lambda) + K_{k + y, y}(\lambda),
\]

and \(\lambda mn/k = \lambda(tk + x)(sk + y)/k = \lambda((t-1)sk + (t-1)y + sk/2 + s(k/2 + x)) + \lambda(k + x)y/k\). By Theorem 1, the graphs \(K_{k, k}\) and \(K_{k/2, k}\) both have a \((k; p, q)\)-decomposition. Since \(k\) divides \(\lambda mn\), we have 2 divides \(\lambda y\), \(k\) divides \(x\) and also \(k/2 \leq (k/2 + x), y \leq k\), then by the hypothesis, the graphs \(K_{k, y}(\lambda)\), \(K_{k/2, x, k}(\lambda)\), and \(K_{k/2, x, y}(\lambda)\) have a \((k; p, q)\)-decomposition. Hence, by Remark 5, the graph \(K_{m, n}(\lambda)\) has the desired decomposition.

Theorem 10. Let \(\{k, m, n, \lambda\} \in \mathbb{N}\) and \(i, j\) be nonnegative integers such that \(\lambda \geq 3\), \(\lambda m \equiv \lambda n \equiv 0 \pmod{2}\), and \(k \equiv 2 \pmod{4}\). If \(K_{k, k}^{i} \oplus k_{k/2, k}^{j}(\lambda)\), \(0 \leq i, j \leq k\) has a \((k; p, q)\)-decomposition, then the graph \(K_{m, n}(\lambda)\), where \(m, n \geq 3k/2\), has a \((k; p, q)\)-decomposition.

Proof. By the hypothesis, let \(m = tk + x\) and \(n = sk + y\), where \(t\) and \(s\) are positive integers, \(x\) and \(y\) are nonnegative integers such that \(0 \leq x, y < k\).
When $x = y = k/2$, we can write

$$K_{m,n}(\lambda) = K_{(t-1)k+(s-1)k+x, y}(\lambda)$$

$$= K_{(t-1)k,(s-1)k}(\lambda) \oplus K_{(t-1)k,\frac{3n}{2},(s-1)k}(\lambda) \oplus K_{\frac{3n}{2},(s-1)k}(\lambda)$$

$$= ((t-1)(s-1)\lambda)K_{k,k} \oplus (t-1)\lambda K_{\frac{3n}{2},k} \oplus (s-1)\lambda K_{\frac{3n}{2},\frac{3n}{2}}.$$

By Theorem 1, the graph $K_{k,k}$ has a $(k; p, q)$-decomposition and by the hypothesis, the graphs $K_{\frac{3n}{2},k}$ and $K_{\frac{3n}{2},\frac{3n}{2}}$ both have a $(k; p, q)$-decomposition. Hence the graph $K_{m,n}(\lambda)$ has the desired decomposition.

Case 1: $0 \leq x, y < k/2$. When $0 \leq x, y < k/2$, we have $t, s \geq 2$. We can write

$$K_{m,n}(\lambda) = K_{(t-1)k+(k+x),(s-1)k+(k+y)}(\lambda)$$

$$= K_{(t-1)k,(s-1)k}(\lambda) \oplus K_{t-1,k,k+y}(\lambda) \oplus K_{k+x,(s-1)k}(\lambda) \oplus K_{k,k+y}(\lambda)$$

$$= ((t-1)(s-1)\lambda)K_{k,k} \oplus (t-1)\lambda K_{k,k+y}(\lambda)$$

and $\lambda mn/k = \lambda(tk + x)(sk + y)/k = \lambda((t-1)(s-1)k + (s-1)(k + x) + (t-1)(k + y)) + \lambda(k + x)(k + y)/k$.

By Theorem 1, the graph $K_{k,k}$ has a $(k; p, q)$-decomposition and by the hypothesis, the graphs $K_{k,k+y}(\lambda)$ and $K_{k+x,k}(\lambda)$ both have a $(k; p, q)$-decomposition. Since k divides λmn, we have k divides $\lambda(k + x)(k + y)$ and also $k/2 \leq (k + x), (k + y) \leq 3k/2$. Then by the hypothesis, the graph $K_{k,k+y}(\lambda)$ has a $(k; p, q)$-decomposition. Hence, by Remark 5, the graph $K_{m,n}(\lambda)$ has the desired decomposition.

Case 2: $k/2 \leq x < k$ and $k/2 < y < k$. We can write $K_{m,n}(\lambda) = K_{tk+x,y}(\lambda)$

$$= K_{tk,x}K_{x,y}(\lambda) \oplus K_{tk,y}(\lambda) \oplus K_{tk,sk}(\lambda) \oplus K_{x,y}(\lambda) \oplus (ts)K_{k,k+y}(\lambda) \oplus sk_{k,y}(\lambda) \oplus sK_{x,y}(\lambda) \oplus K_{x,y}(\lambda),$$

and $\lambda mn/k = \lambda(tk + x)(sk + y)/k = \lambda(tk + sk + sy + ty)/k$. By Theorem 1, the graph $K_{k,k}$ has a $(k; p, q)$-decomposition and by the hypothesis, the graphs $K_{k,y}(\lambda)$ and $K_{x,y}(\lambda)$ both have a $(k; p, q)$-decomposition. Since k divides λmn, we have k divides λxy and also $k/2 \leq x, y < k$, then by the hypothesis, the graph $K_{x,y}(\lambda)$ has a $(k; p, q)$-decomposition. Hence, by Remark 5, the graph $K_{m,n}(\lambda)$ has the desired decomposition.

Case 3: $0 \leq x < k/2$ and $k/2 \leq y < k$. When $0 \leq x < k/2$ and $k/2 \leq y < k$, we have $t \geq 2$ and $s \geq 1$. We can write

$$K_{m,n}(\lambda) = K_{(t-1)k+(k+x),sk+y}(\lambda)$$

$$= K_{(t-1)k,(k+x),sk+y}(\lambda) \oplus K_{(t-1)k,y}(\lambda) \oplus K_{k+x,sk}(\lambda) \oplus K_{k+x,y}(\lambda)$$

$$= ((t-1)s\lambda)K_{k,k} \oplus (t-1)\lambda K_{k,y}(\lambda) \oplus sK_{k+x,k}(\lambda) \oplus K_{k+x,y}(\lambda),$$
Decomposition of Complete Bipartite Multigraphs into Paths ...

and \(\lambda mn/k = \lambda(tk + x)(sk + y)/k = \lambda((t - 1)sk + s(k + x) + (t - 1)y) + \lambda(k + x)y/k \). By Theorem 1, the graph \(K_{k,k} \) has a \((k; p, q)\)-decomposition and by the hypothesis, the graphs \(K_{k,y}(\lambda) \) and \(K_{k+x,k}(\lambda) \) both have a \((k; p, q)\)-decomposition. Since \(k \) divides \(\lambda mn \), we have \(k \) divides \(\lambda(k + x)y \) and also \(k/2 \leq (k + x), y \leq 3k/2 \), then by the hypothesis, the graph \(K_{k+x,y}(\lambda) \) has a \((k; p, q)\)-decomposition. Hence, by Remark 5, the graph \(K_{m,n}(\lambda) \) has the desired decomposition.

Acknowledgments

The authors are grateful to the anonymous referees for their valuable suggestions and comments, which improved the presentation of the paper. The first author thank the University Grants Commission for its financial support through the Grant No.F.4-7/2008(BSR)/11-105/2008(BSR)/ December 2012. The second author thank the Department of Science and Technology, Government of India, New Delhi for its financial support through the Grant No. DST/SR/S4/ MS:282/13.

References

[5] A.A. Abueida and C. Hampson, Multidecomposition of \(K_n - F \) into graph-pairs of order 5 where \(F \) is a Hamilton cycle or an (almost) 1-factor, Ars Combin. 97 (2010) 399–416.

S. Jeevadoss and A. Muthusamy

[22] D. Sotteau, Decomposition of $K_{m,n}$ $(K_{m,n}^*)$ into cycles (circuits) of length $2k$, J. Combin. Theory Ser. B 30 (1981) 75–81. doi:10.1016/0095-8956(81)90093-9
doi:10.1016/S0012-365X(85)80023-6

Received 9 August 2014
Revised 23 February 2015
Accepted 23 February 2015