OPTIMAL CONTROL OF SYSTEMS DETERMINED BY STRONGLY NONLINEAR OPERATOR VALUED MEASURES

N.U. AHMED

School of Information Technology and Engineering
University of Ottawa, Ottawa, Canada

Abstract

In this paper we consider a class of distributed parameter systems (partial differential equations) determined by strongly nonlinear operator valued measures in the setting of the Gelfand triple $V \hookrightarrow H \hookrightarrow V^*$ with continuous and dense embeddings where H is a separable Hilbert space and V is a reflexive Banach space with dual V^*. The system is given by

$$dx + A(dt,x) = f(t,x)\gamma(dt) + B(t)u(dt), \quad x(0) = \xi, \quad t \in I \equiv [0,T]$$

where A is a strongly nonlinear operator valued measure mapping $\Sigma \times V$ to V^* with Σ denoting the sigma algebra of subsets of the set I and f is a nonlinear operator mapping $I \times H$ to H, γ is a countably additive bounded positive measure and the control u is a suitable vector measure. We present existence, uniqueness and regularity properties of weak solutions and then prove the existence of optimal controls (vector valued measures) for a class of control problems.

Keywords: evolution equations, strongly nonlinear operator valued measures, existence of solutions, regularity properties, optimal control.

2000 Mathematics Subject Classification: 35K10, 35L10, 34G20, 34K30, 35A05, 93C20.
References

[5] N.U. Ahmed, Parabolic systems determined by strongly nonlinear operator valued measures, Nonlinear Analysis, Special Issue (Felicitation of Professor V. Lakshmikantham on his 85th birth date).

Received 4 June 2008