STRONG f-STAR FACTORS OF GRAPHS

ZHENG YAN
Yangtze University, Jingzhou
Hubei, China
e-mail: yanzhenghubei@163.com

Abstract
Let G be a graph and $f : V(G) \rightarrow \{2, 3, \ldots\}$. A spanning subgraph F is called strong f-star of G if each component of F is a star whose center x satisfies $\deg_F(x) \leq f(x)$ and F is an induced subgraph of G. In this paper, we prove that G has a strong f-star factor if and only if $\text{oddca}(G - S) \leq \sum_{x \in S} f(x)$ for all $S \subset V(G)$, where $\text{oddca}(G)$ denotes the number of odd complete-cacti of G.

Keywords: f-star factor, strong f-star factor, complete-cactus, factor of graph.

2010 Mathematics Subject Classification: 05C70.

1. Introduction

We consider simple graphs, which have neither loops nor multiple edges. For a graph G, let $V(G)$ and $E(G)$ denote the set of vertices and the set of edges of G, respectively. We write $|G|$ for the order of G (i.e., $|G| = |V(G)|$). For a vertex v of G, we denote by $\deg_G(v)$ the degree of v in G. For a vertex set S of G, let $G - S$ denote the subgraph of G induced by $V(G) - S$. Let $\text{Iso}(G)$ and $\text{iso}(G)$ denote the set of isolated vertices and the number of isolated vertices of G, respectively.

A graph G is called a complete-cactus if G is connected and every block of G is a complete graph. A complete-cactus is called an odd complete-cactus if all its blocks are complete graphs of odd order. Note that K_1 is an odd complete-cactus.

For a set \mathcal{S} of connected graphs, a spanning subgraph F of a graph G is called an \mathcal{S}-factor of G if each component of F is isomorphic to an element of \mathcal{S}. A complete bipartite graph $K_{1,n}$ is called a star, and its vertex of degree n is called the center. For $K_{1,1}$, an arbitrarily chosen vertex is its center.

The following theorem was independently obtained by Las Vergnas [6] and by Amahashi and Kano [2].
Theorem 1 [2, 6]. Let $n \geq 2$ be an integer. Then a graph G has a $\{K_{1,1}, K_{1,2}, \ldots, K_{1,n}\}$-factor if and only if $\text{iso}(G - S) \leq n|S|$ for all $S \subset V(G)$.

Let G be a graph and let $f : V(G) \to \{2, 3, 4, \ldots\}$ be a function defined on $V(G)$. Then a spanning subgraph F is called an f-star factor of G if each component of F is a star and its center x satisfies $\text{deg}_F(x) \leq f(x)$. The following theorem gives a criterion for a graph to have an f-star factor.

Theorem 2 [3]. Let G be a graph and let $f : V(G) \to \{2, 3, \ldots\}$ be a function. Then G has an f-star factor if and only if $\text{iso}(G - S) \leq \sum_{x \in S} f(x)$ for all $S \subset V(G)$.

For a set S of connected graphs, a subgraph H of G is called a strong S-subgraph if every component of H is isomorphic to an element of S and is an induced subgraph of G. A spanning strong S-subgraph is called a strong S-factor. A strong $\{K_{1,1}, K_{1,2}, \ldots\}$-factor is briefly called a strong star factor. Kelmans [7] and Saito and Watanabe [8] proved independently the following theorem.

Theorem 3 [7, 8]. A connected graph G has a strong star factor if and only if G is not an odd complete-cactus.

For a graph G, let $\text{OddCa}(G)$ denote the set of components of G that are odd complete-cacti, and let $\text{oddca}(G) = |\text{OddCa}(G)|$ denote the number of odd complete-cacti of G. Egawa, Kano and Kelmans [4] generalized the above theorem as follows by considering a strong $\{K_{1,1}, K_{1,2}, \ldots, K_{1,n}\}$-factor.

Theorem 4 [4]. Let $n \geq 2$ be an integer. Then a graph G has a strong $\{K_{1,1}, K_{1,2}, \ldots, K_{1,n}\}$-factor if and only if $\text{oddca}(G - S) \leq n|S|$ for all $S \subset V(G)$.

A subgraph H is called a strong f-star subgraph of G if each component of H is a star, whose center x satisfies $\text{deg}_H(x) \leq f(x)$, and H is an induced subgraph of G. A spanning f-star subgraph of G is called a strong f-star factor of G. Obviously, if $f(x) = n$ for all $x \in V(G)$, then a strong f-star factor of G is a strong $\{K_{1,1}, K_{1,2}, \ldots, K_{1,n}\}$-factor. In this paper, we obtain the following result which is a generalization of Theorem 4.

Theorem 5. Let G be a graph and let $f : V(G) \to \{2, 3, \ldots\}$ be a function. Then G has a strong f-star factor if and only if

\[
\text{oddca}(G - S) \leq \sum_{x \in S} f(x), \text{ for all } S \subset V(G).
\]

A strong f-star subgraph H of a graph G is said to be maximum if G has no strong f-star subgraph H' such that $|H'| > |H|$. A formula for the order of a maximum strong f-star subgraph of a graph is easily obtained as a maximum matching, which is given in the following theorem.
Theorem 6. Let \(G \) be a graph and let \(f : V(G) \to \{2, 3, 4, \ldots\} \) be a function. Then the order of a maximum strong \(f \)-star subgraph \(H \) of \(G \) is given by
\[
|H| = |G| - \max_{X \subset V(G)} \left\{ \text{oddca}(G - X) - \sum_{x \in X} f(x) \right\}.
\]

Finally, we consider a problem of covering a given vertex subset with a strong \(f \)-star subgraph. The condition for the existence of such a subgraph, which is given in the following theorem, is a natural extension of the criterion for the existence of a strong \(f \)-star factor.

Theorem 7. Let \(G \) be a graph and let \(f : V(G) \to \{2, 3, 4, \ldots\} \) be a function. Let \(W \) be a subset of \(V(G) \). Then \(G \) has a strong \(f \)-star subgraph covering \(W \) if and only if
\[
\text{oddca}(G - S|W) \leq \sum_{x \in S} f(x), \text{ for all } S \subset V(G),
\]
where \(\text{oddca}(G - S|W) \) denotes the number of odd complete-cacti of \(G - S \) contained in \(W \).

2. Proof of the Results

We need some other notations. For two sets \(X \) and \(Y \), \(X \subset Y \) means that \(X \) is a proper subset of \(Y \). Let \(G \) be a graph. For two vertices \(x \) and \(y \) of \(G \), we write \(xy \) or \(yx \) for an edge joining \(x \) to \(y \). For a vertex \(v \) of \(G \), we denote by \(N_G(v) \) the neighborhood of \(v \). For a subset \(S \) of \(V(G) \), we define \(N_G(S) := \bigcup_{x \in S} N_G(x) \). For convenience, we briefly call a complete-cactus a cactus in the following proofs. Analogously, an odd complete-cactus is called an odd cactus. Every block of a cactus is a complete graph, and we call it an odd block or even block according to its order.

In order to prove Theorem 5, we need the following lemmas.

Lemma 8 [4]. (i) Let \(G \) be an odd complete-cactus. Then for every vertex \(v \) of \(G \), \(G - v \) has a 1-factor.

(ii) An odd complete-cactus does not have a strong star factor.

Lemma 9 [5]. Let \(G \) be a bipartite graph with bipartition \((A, B)\), and let \(g, f : V(G) \to \mathbb{Z} \) be functions such that \(g(x) \leq f(x) \) for all \(x \in V(G) \). Then \(G \) has a \((g, f)\)-factor if and only if
\[
\gamma^*(X,Y) = \sum_{x \in X} f(x) + \sum_{x \in Y} (\deg_G(x) - g(x)) - e_G(X, Y) \geq 0,
\]
and
\[
\gamma^*(Y,X) = \sum_{x \in X} f(x) + \sum_{x \in Y} (\deg_G(x) - g(x)) - e_G(Y, X) \geq 0,
\]
for all subsets \(X \subseteq A \) and \(Y \subseteq B \).
Lemma 10. Let G be a bipartite graph with bipartition (A, B). Let $f : V(G) \to \{1, 2, 3, \ldots \}$ be a function such that $f(x) \geq 2$ for all $x \in A$, and $f(x) = 1$ for all $x \in B$. Then G has a $(1, f)$-factor if and only if

\begin{equation}
|N_G(X)| \geq |X| \text{ for all } X \subseteq A, \text{ and } \sum_{x \in N_G(Y)} f(x) \geq |Y| \text{ for all } Y \subseteq B.
\end{equation}

Proof. If G has a $(1, f)$-factor F, then (4) follows from

\begin{equation}
|N_G(X)| \geq |N_F(X)| \geq |X| \text{ and } \sum_{x \in N_G(Y)} f(x) \geq \sum_{x \in N_F(Y)} f(x) \geq |Y|.
\end{equation}

Conversely, assume that (4) holds. We may assume that G is connected, since otherwise each component satisfies (4) and has a $(1, f)$-factor by induction, and hence G itself has a $(1, f)$-factor. For any subsets $X \subseteq A$ and $Y \subseteq B$, it follows from (4) that

\begin{equation}
\gamma^+(X, Y) = \sum_{x \in X} f(x) + \sum_{y \in Y} (\deg_G - x(y) - 1) \\
\geq \sum_{x \in X} f(x) - |S| \geq \sum_{x \in N_G(S)} f(x) - |S| \geq 0,
\end{equation}

where $S = \text{Iso}(G - X) \cap Y \subseteq B$, $N_G(S) \subseteq X$.

\begin{equation}
\gamma^*(Y, X) = \sum_{y \in Y} f(y) + \sum_{x \in X} (\deg_G - y(x) - 1) \\
\geq |Y| - |T| \geq |N_G(T)| - |T| \geq 0,
\end{equation}

where $T = \text{Iso}(G - Y) \cap X \subseteq A$, $N_G(T) \subseteq Y$.

Therefore by Lemma 9, G has the desired $(1, f)$-factor. \hfill \blacksquare

Proof of Theorem 5. Suppose that G has a strong f-star factor F. Let $\emptyset \neq S \subset V(G)$. Since every odd cactus D of $G - S$ does not have a strong f-star by Lemma 8, F has an edge joining D to S. It is obvious that for every vertex $s \in S$, F has at most $f(x)$ edges joining x to odd cacti in $G - S$. Hence $\text{oddca}(G - S) \leq \sum_{x \in S} f(x)$.

We shall prove the sufficiency of Theorem 5 by induction on $\sum_{x \in V(G)} f(x)$. We may assume that $|G| \geq 3$ and G is connected, since otherwise by applying the induction hypothesis to each component, we can obtain the desired strong star-factor of G. By taking $S = \emptyset$, it follows that G is not an odd cactus.

Obviously, $\sum_{x \in V(G)} f(x) \geq 2|G|$, since $f(x) \geq 2$ for all $x \in V(G)$. If $\sum_{x \in V(G)} f(x) = 2|G|$, then $f(x) = 2$ for all $x \in V(G)$. Thus the condition (1) becomes $\text{oddca}(G - S) \leq 2|S|$, for all $S \subset V(G)$.

Z. Yan
By Theorem 4, G has a strong $\{K_{1,1}, K_{1,2}\}$-factor, which is the desired strong f-factor of G. So we may assume that $\sum_{x \in V(G)} f(x) \geq 2|G| + 1$. Then there exists a vertex $w \in V(G)$ such that $f(w) \geq 3$.

Let us define the number β by

$$\beta = \min_{\emptyset \neq X \subset V(G)} \left\{ \sum_{x \in X} f(x) - \text{oddca}(G - X) \right\}.$$

Then $\beta \geq 0$ by (1), and it follows from the definition of β that

(5) \hspace{1cm} \text{oddca}(G - Y) \leq \sum_{x \in Y} f(x) - \beta, \text{ for all } \emptyset \neq Y \subset V(G).$

Take a maximal subset S of $V(G)$ such that

(6) \hspace{1cm} \sum_{x \in S} f(x) - \text{oddca}(G - S) = \beta.

Claim 1. $\beta = 0$.

Proof. Suppose that $\beta \geq 1$. Define $f^* : V(G) \to \{2, 3, 4,\ldots\}$ by

$$f^*(x) = \begin{cases} f(x) - 1 & \text{if } x = w, \\ f(x) & \text{otherwise.} \end{cases}$$

Let $\emptyset \neq X \subset V(G)$. Then we have

$$\text{oddca}(G - X) \leq \sum_{x \in X} f(x) - \beta \leq \sum_{x \in X} f(x) - 1 \leq \sum_{x \in X} f^*(x).$$

Hence, G has a strong star-factor F^* with respect to f^* by induction, which is also the strong f-star factor of G. \qed

Hereafter we assume $\beta = 0$.

Claim 2. Every component of $G - S$ which is not an odd cactus has a strong f-star factor.

Proof. Let D be a component of $G - S$ which is not an odd cactus, and let $\emptyset \neq X \subset V(D)$. Then by (5), we have

$$\text{oddca}(G - S) + \text{oddca}(D - X) = \text{oddca}(G - S \cup X)$$

$$\leq \sum_{x \in S \cup X} f(x) = \sum_{x \in S} f(x) + \sum_{x \in X} f(x).$$

Thus $\text{oddca}(D - X) \leq \sum_{x \in X} f(x)$ by (6), which implies that D has a strong f-star factor by induction. \qed
We construct a bipartite graph B with bipartition $(S, \text{OddCa}(G - S))$ in which two vertices $x \in S$ and a component $C \in \text{OddCa}(G - S)$ are joined by an edge of B if and only if x is adjacent to C in G.

Claim 3. For every $\emptyset \neq X \subseteq S$ and $\emptyset \neq Y \subseteq \text{OddCa}(G - S)$, it follows that $|N_B(X)| \geq |X|$ and $\sum_{x \in N_B(Y)} f(x) \geq |Y|$.

Proof. Let $\emptyset \neq X \subseteq S$. By (5) and $\beta = 0$, we obtain

$$
\sum_{x \in S - X} f(x) \geq \text{oddca}(G - (S - X)) \geq \text{oddca}(G - S) - |N_B(X)|
$$

$$
\geq \sum_{x \in S} f(x) - |N_B(X)|,
$$

which means $|N_B(X)| \geq \sum_{x \in X} f(x) \geq |X|$. Let $\emptyset \neq Y \subseteq \text{OddCa}(G - S)$. Then $N_B(Y) \subseteq S$, and by (1) we have

$$
|Y| \leq \text{oddca}(G - N_B(Y)) \leq \sum_{x \in N_B(Y)} f(x).
$$

Therefore Claim 3 holds.

By Claim 3, B has a strong f-star factor H given in Lemma 10, which is a $(1, f)$-factor with minimal edge set, and every component of $\text{OddCa}(G - S)$ has degree one in H. Consequently, by Lemma 8(i) and Claim 2, we can obtain a strong f-star factor of G from H.

Proof of Theorem 6. Let $d = \max_{x \in V(G)} \{\text{oddca}(G - X) - \sum_{x \in X} f(x)\}$. Then $d \geq 0$ by considering the case $X = \emptyset$. Moreover, if $d = 0$, then (2) follows from Theorem 5. Hence we may assume $d \geq 1$. Let S be a subset of $V(G)$ such that

$$
\text{oddca}(G - S) - \sum_{x \in S} f(x) = d.
$$

Then by considering $(S \cup \text{OddCa}(G - S))_G$, which is the subgraph of G induced by $S \cup \text{OddCa}(G - S)$, we have that every strong f-star subgraph of G cannot cover at least $\text{oddca}(G - S) - \sum_{x \in S} f(x)$ odd cacti of $\text{OddCa}(G - S)$. Hence $|H| \leq |G| - d$, when H is a maximum strong f-star subgraph of G.

Next we prove the inverse inequality $|H| \geq |G| - d$ for a maximum strong f-star subgraph H of G. Add $2d$ new vertices $\{v_i, u_i : 1 \leq i \leq d\}$ together with d new edges $\{v_iu_i : 1 \leq i \leq d\}$ to G. Then join every v_i to every vertex of G by new edges. Denote the resulting graph by G^*, and define a function $f^* : V(G^*) \to \{2, 3, 4, \ldots\}$ by $f^*(v_i) = f^*(u_i) = 2$ for all $1 \leq i \leq d$, and $f^*(x) = f(x)$ for all $x \in V(G)$.

Let Y be a non-empty subset of $V(G^*)$. We may assume that Y contains no vertices of $\{u_1, \ldots, u_d\}$, when we estimate $\text{oddca}(G^* - Y)$. If $|\{v_1, \ldots, v_d\} \cap Y| < d$, then

$$
\text{oddca}(G^* - Y) \leq |Y \cap \{v_1, \ldots, v_d\}| + 1 \leq \sum_{x \in Y} f(x).
$$
If \(\{v_1, \ldots, v_d\} \subset Y \), then all the vertices of \(\{u_1, \ldots, u_d\} \) become isolated vertices of \(G^* - Y \), and so by the definition of \(d \), we obtain

\[
\text{oddca}(G^* - Y) \leq \text{oddca}(G - (Y \cap V(G))) + d
\]

\[
\leq \sum_{x \in Y \cap V(G)} f(x) + d = \sum_{x \in Y} f(x).
\]

Hence by Theorem 5, \(G^* \) has a strong \(f \)-star factor \(F^* \). Then \(H = F^* - \{u_i, v_i : 1 \leq i \leq d\} \) is a strong \(f \)-star subgraph of \(G \), which covers at least \(|G| - d \) vertices. Hence \(|H| \geq |G| - d \). Consequently, the theorem is proved.

Proof of Theorem 7. First suppose that \(G \) has a strong \(f \)-star subgraph \(F \) covering \(W \). Then for every odd cactus \(C \) of \(G - S \) contained in \(W \), \(F \) has at least one edge joining \(C \) to \(S \). Hence \(\text{oddca}(G - S|W) \leq \sum_{x \in S} \text{deg}_F(x) \).

Next we assume that (3) holds. We may assume that \(G \) is connected, since otherwise, by applying the induction hypothesis to each component of \(G \), we can obtain the desired factor of \(G \). By Theorem 5, we may assume that \(W \) is a proper subset of \(V(G) \), and so \(V(G) - W \neq \emptyset \). Let \(n = |V(G) - W| \). We construct a new graph \(H \) from \(G \) by adding two new vertices \(w_1, w_2 \) and by joining \(w_i (i = 1, 2) \) to every vertex in \(V(G) - W \). Define \(f^* : V(H) \to \{2, 3, \ldots\} \) by

\[
f^*(x) = \begin{cases} f(x) & \text{if } x \in V(G), \\ \max\{2, n\} & \text{if } x \in \{w_1, w_2\}. \end{cases}
\]

It is easy to see that \(G \) has a strong \(f \)-star subgraph covering \(W \) if and only if \(H \) has a strong \(f^* \)-star factor.

Let \(X \subset V(H) \). If \(w_1, w_2 \in X \), let \(S = X - \{w_1, w_2\} \), then

\[
\text{oddca}(H - X) \leq \text{oddca}(G - S|W) + n \leq \sum_{x \in S} f(x) + n < \sum_{x \in X} f^*(x).
\]

If \(w_1 \in X \) and \(w_2 \notin X \), let \(S = X - \{w_1\} \), then

\[
\text{oddca}(H - X) \leq \text{oddca}(G - S|W) + 1 \leq \sum_{x \in S} f(x) + 1 < \sum_{x \in X} f^*(x).
\]

If \(w_1, w_2 \notin X \), then

\[
\text{oddca}(H - X) = \text{oddca}(G - X|W) \leq \sum_{x \in X} f(x).
\]

Therefore, by Theorem 5, \(H \) has a strong \(f^* \)-star factor, and thus \(G \) has the desired strong \(f \)-star subgraph which covers \(W \).
Acknowledgments

The author would like to thank Prof. Mikio Kano for introducing me to problems on factors of graph and for his valuable suggestions.

References

doi:10.1007/978-3-642-21919-1

doi:10.1016/0012-365X(82)90048-6

doi:10.1016/S1385-7258(78)80007-9

doi:10.1002/(SICI)1097-0118(199707)25:3⟨185::AID-JGT2⟩3.0.CO;2-H

doi:10.1016/S0021-9800(70)80006-0

doi:10.1016/0012-365X(78)90006-7

Received 27 December 2013
Revised 29 September 2014
Accepted 29 September 2014