ON FUZZY IDEALS OF PSEUDO MV-ALGEBRAS

Grzegorz Dymek

Institute of Mathematics and Physics
University of Podlasie
3 Maja 54, 08–110 Siedlce, Poland
e-mail: gdymek@o2.pl

Abstract

Fuzzy ideals of pseudo MV-algebras are investigated. The homomorphic properties of fuzzy prime ideals are given. A one-to-one correspondence between the set of maximal ideals and the set of fuzzy maximal ideals \(\mu \) satisfying \(\mu(0) = 1 \) and \(\mu(1) = 0 \) is obtained.

Keywords: pseudo MV-algebra, fuzzy (prime, maximal) ideal.

2000 Mathematics Subject Classification: 06D35.

1. Introduction

The study of pseudo MV-algebras was initiated by G. Georgescu and A. Iorgulescu in [5] and [6], and independently by J. Rachunek in [9] (there they are called generalized MV-algebras or, in short, GMV-algebras) as a non-commutative generalization of MV-algebras which were introduced by C.C. Chang in [1]. The concept of a fuzzy set was introduced by L.A. Zadeh in [10]. Since then these ideas have been applied to other algebraic structures such as semigroups, groups, rings, ideals, modules, vector spaces and topologies. In [8] Y.B. Jun and A. Walendziak applied the concept of a fuzzy set to pseudo MV-algebras. They introduced the notions of a fuzzy ideal and a fuzzy implicative ideal in a pseudo MV-algebra, gave characterizations of them and provided conditions for a fuzzy set to be a fuzzy ideal and a fuzzy implicative ideal. Recently, the author in [3] and [4] defined, investigated and characterized fuzzy prime and fuzzy maximal ideals of pseudo MV-algebras.
In the paper we conduct further investigations of these ideals in Section 3. We provide the homomorphic properties of fuzzy prime ideals. A one-to-one correspondence between the set of maximal ideals of a pseudo MV-algebra A and the set of fuzzy maximal ideals μ of A such that $\mu(0) = 1$ and $\mu(1) = 0$ is established. For the convenience of the reader, in Section 2 we give the necessary material needed in sequel, thus making our exposition self-contained.

2. Preliminaries

Let $A = (A, \oplus, -, \sim, 0, 1)$ be an algebra of type $(2, 1, 1, 0, 0)$. For any $x, y \in A$, set $x \cdot y = (y^- \oplus x^-)\sim$. We consider that the operation \cdot has priority to the operation \oplus, i.e., we will write $x \oplus y \cdot z$ instead of $x \oplus (y \cdot z)$. The algebra A is called a pseudo MV-algebra if for any $x, y, z \in A$ the following conditions are satisfied:

(A1) $x \oplus (y \oplus z) = (x \oplus y) \oplus z$,

(A2) $x \oplus 0 = 0 \oplus x = x$,

(A3) $x \oplus 1 = 1 \oplus x = 1$,

(A4) $1^- = 0, 1^- = 0$,

(A5) $(x^- \oplus y^-)\sim = (x^- \oplus y^-)\sim$,

(A6) $x \oplus x^- \cdot y = y \oplus y^- \cdot x = x \cdot y^- \oplus y = y \cdot x^- \oplus x$,

(A7) $x \cdot (x^- \oplus y) = (x \oplus y^-) \cdot y$,

(A8) $(x^-)\sim = x$.

If the addition \oplus is commutative, then both unary operations $-$ and \sim coincide and A is an MV-algebra.

Throughout this paper A will denote a pseudo MV-algebra. For any $x \in A$ and $n = 0, 1, 2, \ldots$ we put

$$0x = 0 \text{ and } (n+1)x = nx \oplus x,$$

$$x^0 = 1 \text{ and } x^{n+1} = x^n \cdot x.$$
Proposition 2.1 (Georgescu and Iorgulescu [6]). The following properties hold for any \(x \in A \):

\[
\begin{align*}
(a) \quad (x^\sim)^- &= x, \\
(b) \quad x \oplus x^\sim &= 1, \quad x^- \oplus x = 1, \\
(c) \quad x \cdot x^- &= 0, \quad x^\sim \cdot x = 0.
\end{align*}
\]

We define \(x \leq y \) iff \(x^- \oplus y = 1 \).

Proposition 2.2 (Georgescu and Iorgulescu [6]). The following properties hold for any \(a, x, y \in A \):

\[
\begin{align*}
(a) \quad \text{if } x \leq y, \text{ then } a \oplus x &\leq a \oplus y, \\
(b) \quad \text{if } x \leq y, \text{ then } x \oplus a &\leq y \oplus a.
\end{align*}
\]

As it is shown in [6], \((A, \leq) \) is a lattice in which the join \(x \lor y \) and the meet \(x \land y \) of any two elements \(x \) and \(y \) are given by:

\[
\begin{align*}
x \lor y &= x \oplus x^\sim \cdot y = x \cdot y^- \oplus y, \\
x \land y &= x \cdot (x^- \oplus y) = (x \oplus y^-) \cdot y.
\end{align*}
\]

Definition 2.3. A subset \(I \) of \(A \) is called an ideal of \(A \) if it satisfies:

\[
\begin{align*}
(I1) & \quad 0 \in I, \\
(I2) & \quad \text{if } x, y \in I, \text{ then } x \oplus y \in I, \\
(I3) & \quad \text{if } x \in I, \text{ } y \in A \text{ and } y \leq x, \text{ then } y \in I.
\end{align*}
\]

Denote by \(\mathcal{I}(A) \) the set of all ideals of \(A \).

Remark 2.4. Let \(I \in \mathcal{I}(A) \). If \(x, y \in I \), then \(x \cdot y, x \land y, x \lor y \in I \).

Definition 2.5. Let \(I \) be a proper ideal of \(A \) (i.e., \(I \neq A \)). Then
(a) \(I \) is called prime if, for all \(I_1, I_2 \in \mathcal{I}(A) \), \(I = I_1 \cap I_2 \) implies \(I = I_1 \) or \(I = I_2 \).

(b) \(I \) is called maximal iff whenever \(J \) is an ideal such that \(I \subseteq J \subseteq A \), then either \(J = I \) or \(J = A \).

Denote by \(\mathcal{M}(A) \) the set of all maximal ideals of \(A \).

Definition 2.6. The order of an element \(x \in A \) is the least \(n \) such that \(nx = 1 \) if such \(n \) exists, and \(\text{ord}(x) = \infty \) otherwise.

Remark 2.7. It is easy to see that for any \(x \in A \), \(\text{ord}(x^-) = \text{ord}(x^\sim) \).

Theorem 2.8. Let \(x \in A \). Then \(\text{ord}(x) = \infty \) if and only if \(x \in I \) for some proper ideal \(I \) of \(A \).

Proof. Let \(x \in A \). If \(x \) belongs to a proper ideal of \(A \), then clearly \(\text{ord}(x) = \infty \). Now, assume that \(\text{ord}(x) = \infty \). Let \(I \) be the set of all elements \(y \) such that \(y \leq nx \) for some \(n \in \mathbb{N} \). Then \(x \in I \) and \(I \) is a proper ideal of \(A \).

Definition 2.9. Let \(A \) and \(B \) be pseudo MV-algebras. A function \(f : A \to B \) is a homomorphism if and only if it satisfies, for each \(x, y \in A \), the following conditions:

\begin{align*}
\text{(H1)} & \quad f(0) = 0, \\
\text{(H2)} & \quad f(x \oplus y) = f(x) \oplus f(y), \\
\text{(H3)} & \quad f(x^-) = (f(x))^-, \\
\text{(H4)} & \quad f(x^\sim) = (f(x))^\sim.
\end{align*}

Remark 2.10. We also have for all \(x, y \in A \):

(a) \(f(1) = 1 \),

(b) \(f(x \cdot y) = f(x) \cdot f(y) \),

(c) \(f(x \lor y) = f(x) \lor f(y) \),

(d) \(f(x \land y) = f(x) \land f(y) \).
We now review some fuzzy logic concepts. Let Γ be a subset of the interval $[0, 1]$ of real numbers. We define $\bigwedge \Gamma = \inf \Gamma$ and $\bigvee \Gamma = \sup \Gamma$. Obviously, if $\Gamma = \{\alpha, \beta\}$, then $\alpha \wedge \beta = \min \{\alpha, \beta\}$ and $\alpha \vee \beta = \max \{\alpha, \beta\}$. Recall that a fuzzy set in A is a function $\mu : A \rightarrow [0, 1]$. For any fuzzy sets μ and ν in A, we define

$$\mu \leq \nu \iff \mu(x) \leq \nu(x) \text{ for all } x \in A.$$

Definition 2.11. Let A and B be any two sets, μ be any fuzzy set in A and $f : A \rightarrow B$ be any function. The fuzzy set ν in B defined by

$$\nu(y) = \begin{cases}
\sup_{x \in f^{-1}(y)} \mu(x) & \text{if } f^{-1}(y) \neq \emptyset, \\
0 & \text{otherwise}
\end{cases}$$

for all $y \in B$, is called the image of μ under f and is denoted by $f(\mu)$.

Definition 2.12. Let A and B be any two sets, $f : A \rightarrow B$ be any function and ν be any fuzzy set in $f(A)$. The fuzzy set μ in A defined by

$$\mu(x) = \nu(f(x)) \text{ for all } x \in A$$

is called the preimage of ν under f and is denoted by $f^{-1}(\nu)$.

3. Fuzzy ideals

In this section we investigate fuzzy prime ideals and fuzzy maximal ideals of a pseudo MV-algebra. First, we recall from [8] the definition and some facts concerning fuzzy ideals.

Definition 3.1. A fuzzy set μ in a pseudo MV-algebra A is called a fuzzy ideal of A if it satisfies for all $x, y \in A$:

1. $\mu(x \oplus y) \geq \mu(x) \wedge \mu(y)$,
2. if $y \leq x$, then $\mu(y) \geq \mu(x)$.
It is easily seen that (d2) implies

(d3) \(\mu(0) \geq \mu(x) \) for all \(x \in A \).

Denote by \(\mathcal{FI}(A) \) the set of all fuzzy ideals of \(A \).

Example 3.2. Let \(A = \{(1, y) \in \mathbb{R}^2 : y \geq 0\} \cup \{(2, y) \in \mathbb{R}^2 : y \leq 0\} \), \(0 = (1, 0), \ 1 = (2, 0) \). For any \((a, b), (c, d) \in A\), we define operations \(\oplus, \neg, \sim\) as follows:

\[
(a, b) \oplus (c, d) = \begin{cases}
(1, b + d) & \text{if } a = c = 1, \\
(2, ad + b) & \text{if } ac = 2 \text{ and } ad + b \leq 0, \\
(2, 0) & \text{in other cases,}
\end{cases}
\]

\[
(a, b)^- = \left(\frac{2}{a}, -\frac{2b}{a} \right),
\]

\[
(a, b)^\sim = \left(\frac{2}{a}, -\frac{b}{a} \right).
\]

Then \(A = (A, \oplus, \neg, \sim, 0, 1) \) is a pseudo MV-algebra (see [2]). Let \(A_1 = \{(1, y) \in \mathbb{R}^2 : y > 0\} \) and \(A_2 = \{(2, y) \in \mathbb{R}^2 : y < 0\} \) and let \(0 \leq \alpha_3 < \alpha_2 < \alpha_1 \leq 1 \). We define a fuzzy set \(\mu \) in \(A \) as follows:

\[
\mu(x) = \begin{cases}
\alpha_1 & \text{if } x = 0, \\
\alpha_2 & \text{if } x \in A_1, \\
\alpha_3 & \text{if } x \in A_2 \cup \{1\}.
\end{cases}
\]

It is easily checked that \(\mu \) satisfies (d1) and (d2). Thus \(\mu \in \mathcal{FI}(A) \).

Proposition 3.3 (Jun and Walendziak [8]). Every fuzzy ideal \(\mu \) of \(A \) satisfies the following two inequalities:

\[
\begin{align*}
(1) \quad \mu(y) & \geq \mu(x) \land \mu(y \cdot x^-) \quad \text{for all } x, y \in A, \\
(2) \quad \mu(y) & \geq \mu(x) \land \mu(x^\sim \cdot y) \quad \text{for all } x, y \in A.
\end{align*}
\]
Proposition 3.4 (Jun and Walendziak [8]). For a fuzzy set \(\mu \) in \(A \), the following are equivalent:

(a) \(\mu \in \mathcal{FI}(A) \),

(b) \(\mu \) satisfies the conditions (d3) and (1),

(c) \(\mu \) satisfies the conditions (d3) and (2).

Now, we consider two special fuzzy sets in \(A \). Let \(I \) be a subset of \(A \). Define a fuzzy set \(\mu_I \) in \(A \) by

\[
\mu_I(x) = \begin{cases}
\alpha & \text{if } x \in I, \\
\beta & \text{otherwise},
\end{cases}
\]

where \(\alpha, \beta \in [0,1] \) with \(\alpha > \beta \). The fuzzy set \(\mu_I \) is a generalization of a fuzzy set \(\chi_I \) which is the characteristic function of \(I \):

\[
\chi_I(x) = \begin{cases}
1 & \text{if } x \in I, \\
0 & \text{otherwise}.
\end{cases}
\]

We have simple proposition.

Proposition 3.5. \(I \in \mathcal{I}(A) \) iff \(\mu_I \in \mathcal{FI}(A) \).

Corollary 3.6. \(I \in \mathcal{I}(A) \) iff \(\chi_I \in \mathcal{FI}(A) \).

For an arbitrary fuzzy set \(\mu \) in \(A \), consider the set \(A_\mu = \{ x \in A : \mu(x) = \mu(0) \} \). We have the following simple proposition.

Proposition 3.7. If \(\mu \in \mathcal{FI}(A) \), then \(A_\mu \in \mathcal{I}(A) \).

The following example shows that the converse of Proposition 3.7 does not hold.

Example 3.8. Let \(A \) be as in Example 3.2. Define a fuzzy set \(\mu \) in \(A \) by

\[
\mu(x) = \begin{cases}
\frac{1}{2} & \text{if } x = 0, \\
\frac{2}{3} & \text{if } x \neq 0.
\end{cases}
\]

Then \(A_\mu = \{0\} \in \mathcal{I}(A) \) but \(\mu \notin \mathcal{FI}(A) \).
Since $A_{\mu_I} = I$, we have a simple proposition.

Proposition 3.9. $\mu_I \in \mathcal{FI}(A)$ iff $A_{\mu_I} \in \mathcal{I}(A)$.

Proposition 3.10. Let $\mu, \nu \in \mathcal{FI}(A)$. If $\mu \leq \nu$ and $\mu(0) = \nu(0)$, then $A_\mu \subseteq A_\nu$.

Proof. Let $x \in A_\mu$. Then $\mu(x) = \mu(0) = \nu(0)$ and since $\mu(x) \leq \nu(x)$, we have $\nu(x) = \nu(0)$. Hence, $x \in A_\nu$.

Theorem 3.11. Let $x \in A$. Then $\text{ord}(x) = \infty$ if and only if $\mu(x) = \mu(0)$ for some non-constant fuzzy ideal μ of A.

Proof. Let $x \in A$. Suppose $\text{ord}(x) = \infty$. Then, by Theorem 2.8, $x \in I$ for some proper ideal I of A. Thus $\chi_I(x) = 1 = \chi_I(0)$ for the non-constant fuzzy ideal χ_I of A.

Conversely, assume that $\mu(x) = \mu(0)$ for some non-constant fuzzy ideal μ of A. Then $x \in A_\mu$ and A_μ is a proper ideal of A. Hence, by Theorem 2.8, $\text{ord}(x) = \infty$.

Theorem 3.12. Let $\mu \in \mathcal{FI}(A)$. Then a subset $P(\mu) = \{x \in A : \mu(x) > 0\}$ of A is an ideal when it is non-empty.

Proof. Assume that μ is a fuzzy ideal of A such that $P(\mu) \neq \emptyset$. Obviously, $0 \in P(\mu)$. Let $x, y \in A$ be such that $x, y \in P(\mu)$. Then $\mu(x) > 0$ and $\mu(y) > 0$. It follows from (d1) that $\mu(x \oplus y) \geq \mu(x) \wedge \mu(y) > 0$ so that $x \oplus y \in P(\mu)$. Now, let $x, y \in A$ be such that $x \in P(\mu)$ and $y \leq x$. Then, by (d2), we have $\mu(y) \geq \mu(x)$, and since $\mu(x) > 0$, we obtain $\mu(y) > 0$. So, $y \in P(\mu)$. Thus, $P(\mu)$ is the ideal of A.

Proposition 3.13 (Dymek [3]). Let $f : A \rightarrow B$ be a homomorphism, $\mu \in \mathcal{FI}(A)$ and $\nu \in \mathcal{FI}(B)$. Then:

(a) if μ is constant on $\ker f$, then $f^{-1}(f(\mu)) = \mu$,

(b) if f is surjective, then $f(f^{-1}(\nu)) = \nu$.

Proposition 3.14 (Dymek [3]). Let $f : A \rightarrow B$ be a surjective homomorphism and $\nu \in \mathcal{FI}(B)$. Then $f^{-1}(\nu) \in \mathcal{FI}(A)$.
Proposition 3.15 (Dymek [3]). Let $f : A \rightarrow B$ be a surjective homomorphism and $\mu \in \mathcal{J}(A)$ be such that $A_\mu \supseteq \text{Ker} f$. Then $f(\mu) \in \mathcal{J}(B)$.

Now, we establish the analogous homomorphic properties of fuzzy prime ideals. First, we recall from [4] the definition and some characterizations of a fuzzy prime ideal.

Definition 3.16. A fuzzy ideal μ of A is said to be fuzzy prime if it is non-constant and satisfies:

$$\mu(x \land y) = \mu(x) \lor \mu(y)$$

for all $x, y \in A$.

Proposition 3.17 (Dymek [4]). Let μ be a non-constant fuzzy ideal of A. Then the following are equivalent:

(a) μ is a fuzzy prime ideal of A,
(b) for all $x, y \in A$, if $\mu(x \land y) = \mu(0)$, then $\mu(x) = \mu(0)$ or $\mu(y) = \mu(0)$,
(c) for all $x, y \in A$, $\mu(x \cdot y^-) = \mu(0)$ or $\mu(y \cdot x^-) = \mu(0)$,
(d) for all $x, y \in A$, $\mu(x^\sim \cdot y) = \mu(0)$ or $\mu(y^\sim \cdot x) = \mu(0)$.

The following two theorems give the homomorphic properties of fuzzy prime ideals and they are a supplement of the Section 4 of [4].

Theorem 3.18. Let $f : A \rightarrow B$ be a surjective homomorphism and ν be a fuzzy prime ideal of B. Then $f^{-1}(\nu)$ is a fuzzy prime ideal of A.

Proof. From Proposition 3.14 we know that $f^{-1}(\nu) \in \mathcal{J}(A)$. Obviously, $f^{-1}(\nu)$ is non-constant. Let $x, y \in A$ be such that $(f^{-1}(\nu))(x \land y) = (f^{-1}(\nu))(0)$. Then $\nu(f(x) \land f(y)) = \nu(f(0)) = \nu(0)$. So, by Proposition 3.17, $\nu(f(x)) = \nu(f(0))$ or $\nu(f(y)) = \nu(f(0))$, i.e., $(f^{-1}(\nu))(x) = (f^{-1}(\nu))(0)$ or $(f^{-1}(\nu))(y) = (f^{-1}(\nu))(0)$. Therefore, from Proposition 3.17 it follows that $f^{-1}(\nu)$ is a fuzzy prime ideal of A.

Theorem 3.19. Let $f : A \rightarrow B$ be a surjective homomorphism and μ a fuzzy prime ideal of A such that $A_\mu \supseteq \text{Ker} f$. Then $f(\mu)$ is a fuzzy prime ideal of B when it is non-constant.
Proof. From Proposition 3.15 we know that $f(\mu) \in \mathcal{F}(A)$. Assume that $f(\mu)$ is non-constant. Let $x_B, y_B \in B$ be such that $(f(\mu))(x_B \wedge y_B) = (f(\mu))(0)$. Since f is surjective, there exist $x_A, y_A \in A$ such that $f(x_A) = x_B$ and $f(y_A) = y_B$. Since $A_\mu \supseteq \text{Ker} f$, μ is constant on $\text{Ker} f$. Hence, by Proposition 3.13(a), we have

$$\mu(0) = (f(\mu))(0) = (f(\mu))(x_B \wedge y_B) = (f(\mu))(f(x_A \wedge y_A))$$

$$= (f^{-1}(f(\mu)))(x_A \wedge y_A) = \mu(x_A \wedge y_A).$$

Since μ is fuzzy prime, from Proposition 3.17 we conclude that $\mu(x_A) = \mu(0)$ or $\mu(y_A) = \mu(0)$. Thus

$$(f(\mu))(0) = \mu(0) = \mu(x_A) = (f^{-1}(f(\mu)))(x_A)$$

$$= (f(\mu))(f(x_A)) = (f(\mu))(x_B) \text{ or}$$

$$(f(\mu))(0) = \mu(0) = \mu(y_A) = (f^{-1}(f(\mu)))(y_A)$$

$$= (f(\mu))(f(y_A)) = (f(\mu))(y_B).$$

Therefore, from Proposition 3.17 it follows that $f(\mu)$ is a fuzzy prime ideal of A.

Now, we investigate fuzzy maximal ideals of a pseudo MV-algebra. The investigations are a continuation of the Section 4 of [3].

Definition 3.20. A fuzzy ideal μ of A is called fuzzy maximal iff A_μ is a maximal ideal of A.

Denote by $\mathcal{FM}(A)$ the set of all fuzzy maximal ideals of A.

Proposition 3.21 (Dymek [3]). Let $I \in \mathcal{I}(A)$. Then $I \in \mathcal{M}(A)$ if and only if $\mu_I \in \mathcal{FM}(A)$.

Corollary 3.22. Let $I \in \mathcal{I}(A)$. Then $I \in \mathcal{M}(A)$ if and only if $\chi_I \in \mathcal{FM}(A)$.

Proposition 3.23 (Dymek [3]). If $\mu \in \mathcal{FM}(A)$, then μ has exactly two values.
Now, denote by $\mathcal{FM}_0(A)$ the set of all fuzzy maximal ideals μ of A such that $\mu(0) = 1$ and $\mu(1) = 0$. Obviously, $\mathcal{FM}_0(A) \subseteq \mathcal{FM}(A)$. From Proposition 3.23 we immediately have the following theorem.

Theorem 3.24. If $\mu \in \mathcal{FM}_0(A)$, then $\text{Im}\mu = \{0, 1\}$.

Theorem 3.25. If $\mu \in \mathcal{FM}_0(A)$, then $\mu = \chi_{A_\mu}$.

Proof. Let $x \in A$. Since

$$\chi_{A_\mu}(x) = \begin{cases} 1 & \text{if } \mu(x) = 1, \\ 0 & \text{if } \mu(x) = 0, \end{cases}$$

we have the result.

Theorem 3.26. If $\mu \in \mathcal{FM}_0(A)$, then $A_\mu = P(\mu)$.

Proof. It is straightforward.

Theorem 3.27. Let $\mu \in \mathcal{FM}_0(A)$. If there exists a fuzzy ideal ν of A such that $\nu(0) = 1, \nu(1) = 0$ and $\mu \leq \nu$, then $\nu \in \mathcal{FM}_0(A)$ and $\mu = \nu = \chi_{A_\mu} = \chi_{A_\nu}$.

Proof. From Proposition 3.10 we know that $A_\mu \subseteq A_\nu$. Since A_μ is maximal, it follows that $A_\mu = A_\nu$ because $A_\nu \neq A$. Thus A_ν is also maximal. Hence ν is fuzzy maximal, and so $\nu \in \mathcal{FM}_0(A)$. Since $\mu, \nu \in \mathcal{FM}_0(A)$, by Theorem 3.25, $\mu = \chi_{A_\mu}$ and $\nu = \chi_{A_\nu}$. Thus $\mu = \chi_{A_\mu} = \chi_{A_\nu} = \nu$.

Theorem 3.28. Let $\mu \in \mathcal{FM}(A)$ and define a fuzzy set $\hat{\mu}$ in A by

$$\hat{\mu}(x) = \frac{\mu(x) - \mu(1)}{\mu(0) - \mu(1)}$$

for all $x \in A$. Then $\hat{\mu} \in \mathcal{FM}_0(A)$.

Proof. Since $\mu(0) \geq \mu(x)$ for all $x \in A$ and $\mu(0) \neq \mu(1)$, $\hat{\mu}$ is well-defined. Clearly, $\hat{\mu}(1) = 0$ and $\hat{\mu}(0) = 1 \geq \hat{\mu}(x)$ for all $x \in A$. Thus $\hat{\mu}$ satisfies (d3).
Let \(x, y \in A \). Then
\[
\hat{\mu}(x) \land \hat{\mu}(y \cdot x^-) = \frac{\mu(x) - \mu(1)}{\mu(0) - \mu(1)} \lor \frac{\mu(y \cdot x^-) - \mu(1)}{\mu(0) - \mu(1)}
\]
\[
= \frac{1}{\mu(0) - \mu(1)} \left[(\mu(x) - \mu(1)) \lor (\mu(y \cdot x^-) - \mu(1)) \right]
\]
\[
= \frac{1}{\mu(0) - \mu(1)} \left[(\mu(x) \lor \mu(y \cdot x^-)) - \mu(1) \right]
\]
\[
\leq \frac{1}{\mu(0) - \mu(1)} [\mu(y) - \mu(1)] = \frac{\mu(y) - \mu(1)}{\mu(0) - \mu(1)} = \hat{\mu}(y).
\]

Thus \(\hat{\mu} \) satisfies (1). Therefore, \(\hat{\mu} \) is the fuzzy ideal of \(A \) satisfying \(\hat{\mu}(0) = 1 \) and \(\hat{\mu}(1) = 0 \). Moreover, it is easily seen, that \(A_{\hat{\mu}} = A_{\mu} \). Hence, \(\hat{\mu} \in FM_0(A) \).

Corollary 3.29. If \(\mu \in FM_0(A) \), then \(\mu = \hat{\mu} \).

Now, we show a one-to-one correspondence between the sets \(M(A) \) and \(FM_0(A) \).

Theorem 3.30. Let \(A \) be a pseudo MV-algebra. Then functions \(\varphi : M(A) \to FM_0(A) \) defined by \(\varphi(M) = \chi_M \) for all \(M \in M(A) \) and \(\psi : FM_0(A) \to M(A) \) defined by \(\psi(\mu) = A_\mu \) for all \(\mu \in FM_0(A) \) are inverses of each other.

Proof. Let \(M \in M(A) \). Then \(\psi \varphi(M) = \psi(\chi_M) = A_{\chi_M} = M \). Now, let \(\mu \in FM_0(A) \). Then we also have \(\varphi \psi(\mu) = \varphi(A_\mu) = \chi_{A_\mu} = \mu \) by Theorem 3.25. Therefore \(\varphi \) and \(\psi \) are inverses of each other.

From Theorem 3.30 we obtain the following theorem.

Theorem 3.31. There is a one-to-one correspondence between the set of maximal ideals of a pseudo MV-algebra \(A \) and the set of fuzzy maximal ideals \(\mu \) of \(A \) such that \(\mu(0) = 1 \) and \(\mu(1) = 0 \).

Remark 3.32. Theorem 3.31 implies Theorem 3.22 of [7], the analogous one for MV-algebras.
Acknowledgements

The author thanks Professor A. Walendziak for his helpful comments.

References

Received 23 February 2007
Revised 4 April 2007