CATEGORIES OF FUNCTORS BETWEEN CATEGORIES WITH PARTIAL MORPHISMS

HANS-JÜRGEN VOGEL

Institute of Mathematics, University of Potsdam
PF 60 15 53, D–14415 Potsdam, Germany

e-mail: vogel@rz.uni-potsdam.de
or: hans-juergen.vogel@freenet.de

Dedicated to
Dr. habil. Hans-Jürgen Hoehnke
on the occasion of his 80th birthday.

Abstract

It is well-known that the composition of two functors between categories yields a functor again, whenever it exists. The same is true for functors which preserve in a certain sense the structure of symmetric monoidal categories. Considering small symmetric monoidal categories with an additional structure as objects and the structure preserving functors between them as morphisms one obtains different kinds of functor categories, which are even dt-symmetric categories.

Keywords: symmetric monoidal category, dhts-category, Hoehnke category, Hoehnke theory, monoidal functor, d-monoidal functor, dht-symmetric functor, functor composition, cartesian product.

2000 Mathematics Subject Classification: 18D10, 18D20, 18D99, 18A25, 08A55, 08C05, 08A02.

1. Introduction

Categories of ”partial morphisms” have become a subject of stronger interest by several authors more than 25 years ago, since such categories are of importance in different branches of mathematics and computer science.
Hoehnke ([8]) introduced already in 1976 the basic concept of a "Hoehnke
category", by himself named "diagonal-halfterminal-symmetric category",
as a symmetric monoidal category in the sense of Eilenberg-Kelly ([4]) with
additional properties.

It is easy to see that other approaches, given e.g. in [1], [2], [3], [13], [15],
or [16], respectively, are more or less related to the concept of Hoehnke. More
precisely, the concept of a Hoehnke category comprises the other concepts
mentioned above and reflects best the properties of the category Par
of all partial functions between arbitrary sets. A Hoehnke category
K, endowed
with a morphism family $\nabla = (\nabla_A \in K[A \otimes A, A] | A \in |K|)$ characterized
by two conditions, allows a category-theoretical characterization of Par (cf.
[19], [9]). This observation leads to the introduction of dht-symmetric cate-
gories endowed with so called diagonal inversions ∇, see [22].

A symmetric monoidal category in the sense of Eilenberg-Kelly ([4]) is
a sequence

$$K^\bullet = (K, \otimes, I, a, r, l, s)$$

consisting of a category K, a bifunctor $\otimes : K \times K \to K$, a distinguished
object $I \in |K|$, and families $a = (a_{A,B,C} \in K[A \otimes (B \otimes C), (A \otimes B) \otimes
C] | A, B, C \in |K|)$, $r = (r_A \in K[A \otimes I, A] | A \in |K|)$, $l = (l_A \in
K[I \otimes A, A] | A \in |K|)$, $s = (s_{A,B} \in K[A \otimes B, B \otimes A] | A, B \in |K|)$
of isomorphisms in K (associativity, right-identity, left-identity, symmetry)
such that the following conditions are fulfilled:

Bifunctor conditions:

(F1) $\forall \rho, \rho' \in K \ (\text{dom } (\rho \otimes \rho') = \text{dom } \rho \otimes \text{dom } \rho')$,

(F2) $\forall \rho, \rho' \in K \ (\text{cod } (\rho \otimes \rho') = \text{cod } \rho \otimes \text{cod } \rho')$,

(F3) $\forall A, B \in |K| \ (1_{A \otimes B} = 1_A \otimes 1_B)$,

(F4) $\forall A, B, C, A', B', C' \in |K| \ \forall \rho \in K[A, B], \sigma \in K[B, C],$

$$\rho' \in K[A', B'], \sigma' \in K[B', C'] \ ((\rho \otimes \rho')(\sigma \otimes \sigma') = \rho\sigma \otimes \rho'\sigma'),$$
Conditions of monoidality:

\[(M1) \quad \forall A, B, C, D \in |K| \quad (a_{A,B,C\otimes D}a_{A\otimes B,C,D} = (1_A \otimes a_{B,C,D})a_{A,B,C \otimes 1_D}),\]

\[(M2) \quad \forall A, B \in |K| \quad (a_{A,I,B}(r_A \otimes 1_B) = 1_A \otimes l_B),\]

\[(M3) \quad \forall A, B, C \in |K| \quad (a_{A,B,C}a_{A,C,B} = (1_A \otimes s_{B,C})a_{A,B,C \otimes 1_B}),\]

\[(M4) \quad \forall A, B \in |K| \quad (s_{A,B}a_{B,A} = 1_A \otimes B),\]

\[(M5) \quad \forall A \in |K| \quad (s_{A,I}l_A = r_A),\]

\[(M6) \quad \forall A, B, C, A', B', C' \in |K| \quad \forall \rho \in K[A, A'], \sigma \in K[B, B'], \tau \in K[C, C'] \quad (a_{A,B,C}((\rho \otimes \sigma) \otimes \tau) = (\rho \otimes (\sigma \otimes \tau))a_{A',B',C'}),\]

\[(M7) \quad \forall A, A' \in |K| \quad \forall \rho \in K[A, A'] \quad (r_{A\rho} = (\rho \otimes 1_I)r_{A'}),\]

\[(M8) \quad \forall A, B \in |K| \quad \forall \rho \in K[A, A'], \sigma \in K[B, B'] \quad (s_{A,B}(\sigma \otimes \rho) = (\rho \otimes \sigma)s_{A',B'}).\]

The defining conditions of a symmetric monoidal category determine a lot of properties (see for example [22] or [26]), especially concerning the so-called “middle-exchange isomorphism”

\[b_{A,B,C,D} \in K[(A \otimes B) \otimes (C \otimes D), (A \otimes C) \otimes (B \otimes D)]\]

defined for arbitrary \(A, B, C, D \in |K|\) by

\[(B1) \quad b_{A,B,C,D} := a_{A\otimes B,C,D}(a_{A,B,C}^{-1}(1_A \otimes s_{B,C})a_{A,C,B} \otimes 1_D)a_{A\otimes C,B,D}^{-1},\]

for instance:
H.-J. Vogel

∀A, B, C, D, A′, B′, C′, D′ ∈ |K|
∀ρ ∈ K[A, A′] ∀σ ∈ K[B, B′] ∀λ ∈ K[C, C′] ∀μ ∈ K[D, D′]

(M15) (b_{A, B, C, D}((ρ ⊗ λ) ⊗ (σ ⊗ μ)) = ((ρ ⊗ σ) ⊗ (λ ⊗ μ))b_{A′, B′, C′, D′}).

∀A, B ∈ |K| (b_{A, I, I, B} = 1_A ⊗ 1_I ⊗ 1_B).

(M19) Let K• be a symmetric monoidal category as above. A sequence (K•; d) is called diagonal-symmetric monoidal category or shortly, ds-category (in [7] considered in the strict case as a special Kronecker-category, in [22] ”diagonal-symmetrische Kategorie”) if d = (d_A ∈ K[A, A ⊗ A] | A ∈ |K|) is a family of morphisms of K such that the Conditions of diagonality:

(D1) ∀A, A′ ∈ |K| ∀ϕ ∈ K[A, A′] (ϕd_A = d_A(ϕ ⊗ ϕ)),

(D2) ∀A ∈ |K| (d_A(d_A ⊗ 1_A) = d_A(1_A ⊗ d_A)a_{A,A,A}),

(D3) ∀A ∈ |K| (d_As_{A,A} = d_A),

(D4) ∀A, B ∈ |K| ((d_A ⊗ d_B)b_{A,A,B,B} = d_{A⊗B})

are fulfilled, where b_{A,B,C,D} is the middle exchange isomorphism defined as above.

(K•, d, t) is called diagonal-terminal-symmetric monoidal category or dts-category (cf. [7]) if (K•, d) is a ds-category containing a family t = (t_A | A ∈ |K|) of terminal morphisms t_A ∈ K[A, I] such that the conditions

(T1) ∀A, A′ ∈ |K| ∀ϕ ∈ K[A, A′] (ϕt_A = t_A) and

(DTR) ∀A ∈ |K| (d_A(1_A ⊗ t_A)r_A = 1_A)

are right.
(K*; d, t) will be called diagonal-halfterminal-symmetric monoidal category or, shortly, dhts-category (cf. [8], [18]), if K* is a symmetric monoidal category endowed with morphism families d and t as above, such that

- (D1) \forall A, A' \in |K| \quad \forall \varphi \in K[A, A'] \quad (d_A(\varphi \otimes \varphi) = \varphi d_{A'})
- (DTR) \quad \forall A \in |K| \quad (d_A(1_A \otimes t_A)r_A = 1_A)
- (DTL) \quad \forall A \in |K| \quad (d_A(t_A \otimes 1_A)l_A = 1_A)
- (DTRL) \quad \forall A_1, A_2 \in |K| \quad (d_{A_1 \otimes A_2}((1_{A_1} \otimes t_{A_2})r_{A_1} \otimes (t_{A_1} \otimes 1_{A_2})l_{A_2}) = 1_{A_1 \otimes A_2})
- (TT) \quad \forall A, B \in |K| \quad (t_{A \otimes B} = (t_A \otimes t_B)t_{I \otimes I})

are fulfilled. (K*; d, \nabla) is called diagonal-diagonalinversional-symmetric monoidal category or d\nabla s-category (cf. [22]) if (K*; d) is a ds-category such that there is a family \nabla = (\nabla_A : A \otimes A \to A \mid A \in |K|) of morphisms in K (so-called diagonal inversions) fulfilling the conditions

- (D* 1) \quad \forall A \in |K| \quad (d_A \nabla_A = 1_A)
- (D* 2) \quad \forall A \in |K| \quad (\nabla_A d_A d_{A \otimes A} = d_{A \otimes A}(\nabla_A d_A \otimes 1_{A \otimes A}))
- (D* 3) \quad \forall A \in |K| \quad (\nabla d_A = (1_A \otimes d_A)a_{A, A, A}(\nabla \otimes 1_A))
- (D* 4) \quad \forall A \in |K| \quad (\nabla_A d_A = \left(d_A \otimes 1_A\right)a_{A, A, A}^{-1}(1_A \otimes \nabla_A)), \quad and

(\nabla \nabla) \quad \forall A, A' \in |K| \quad \forall \varphi \in K[A, A'] \quad ((\varphi \otimes \varphi)\nabla_{A'} = \nabla_A \varphi).

Let (K*, d) be a ds-category.

Then (K*, d, \nabla) is called diagonal-halfdiagonalinversional-symmetric monoidal category or dh\nabla s-category (cf. [22]) if \nabla = (\nabla_A \in K[A \otimes A, A \mid A \in |K|) is a family of morphisms of K (diagonal inversions) such that (D* 1), (D* 2), (D* 3), (D* 4), and

(\nabla \nabla) \quad \forall A \in |K| \quad ((\nabla_A \otimes \nabla_A)\nabla_A = \nabla_{A \otimes A} \nabla_A)

hold.
A diagonal-halfterminal-halfdiagonalinversional-symmetric monoidal category, for short dhth∇s-category, is a sequence \((K^\bullet;d,t,\nabla)\) such that \((K^\bullet;d,t)\) is a dhts-category and \(\nabla = (\nabla_A: A \otimes A \rightarrow A \mid A \in |K|)\) is a family of morphisms in \(K\) with the properties \((D^*_1)\) and \((D^*_2)\).

Example. The category consisting of one object \(I\) and one morphism \(1_I\) forms the simplest model of the axioms above, where \(I \otimes I = I, a_{I,I,I} = 1_I, r_I = l_I = s_{I,I} = 1_I \otimes I = 1_I, d_I = 1_I, t_I = 1_I, \nabla_I = 1_I, 1_I \otimes 1_I = 1_I\). This symmetric monoidal category will be denoted by \(\Omega\).

\((K^\bullet;d,t,o)\) is called Hoehnke category (in [8], [18], and [22] named dhts-category), if \((K^\bullet;d,t)\) is a dhts-category as above endowed with a distinguished object \(O\) and a distinguished morphism \(o \in K[I,O]\) such that

\[(O1) \quad \forall A \in |K| \ (A \otimes O = O \otimes A = O),\]

\[(o1) \quad \forall A \in |K| \ \forall \varphi \in K[A,O] \ (t_A o = \varphi),\] and

\[(o2) \quad \forall A \in |K| \ \forall \psi \in K[O,A] \ ((1_A \otimes t_O)r_A = \psi)\]

are valid.

Finally, a di-Hoehnke category or Hoehnke category with half-diagonalinversions (in [22] denoted as dht\(\nabla\)-symmetric category) \((K^\bullet;d,t,\nabla,o)\) is defined by the conditions that \((K^\bullet;d,t,o)\) is a Hoehnke category and \((K^\bullet;d,t,\nabla)\) is a dhth\(\nabla\)-category.

Example. A simple model of a Hoehnke category (di-Hoehnke category), denoted by \(\Gamma\), is given as follows:

There are exactly 2 objects and 5 morphisms:

\[|\Gamma| = \{I, O \neq I\}, \text{ and } \Gamma = \Gamma[O,O] \cup \Gamma[O,I] \cup \Gamma[I,O] \cup \Gamma[I,I],\]

where

\[\Gamma[O,O] = \{1_O\}, \ \Gamma[O,I] = \{t_O\}, \ \Gamma[I,O] = \{o\}, \ \Gamma[I,I] = \{1_I, o_{I,I} \neq 1_I\},\]

the \(\otimes\)-operation for the objects is defined by
Categories of functors between categories with ...

\[O \otimes O = I \otimes O = O \otimes I = O; \ I \otimes I = I, \]

the composition of morphisms by

\[1_{O}1_{O} = 1_{O}, \ o1_{O} = o = 1_{I}o, \ o_{t}O = o_{I,I}, \ t_{O}o = 1_{O}, \]
\[t_{O} = t_{O}1_{I} = 1_{O}t_{O} = t_{O}o_{I,I}, \ 1_{I}o_{I,I} = o_{I,I}1_{I} = o_{I,I}, \ 1_{I}1_{I} = 1_{I}, \]

the distinguished morphisms are

\[a_{I,I,I} = r_{I} = l_{I} = s_{I,I} = 1_{I}, \]
\[a_{X,Y,Z} = r_{X} = l_{X} = s_{X,Y} = 1_{O} \text{ if } X = O \lor Y = O \lor Z = O, \]
\[d_{I} = t_{I} = \nabla_{I} = 1_{I} , \ d_{O} = t_{O} = \nabla_{O} = 1_{O}, \]

and the \(\otimes \)-operation for morphisms is defined by

\[\forall \varphi \in \Gamma \ (1_{O} \otimes \varphi = \varphi \otimes 1_{O} = 1_{O}), \]
\[o \otimes o = o, \ t_{O} \otimes t_{O} = t_{O}, \ o \otimes t_{O} = t_{O} \otimes o = 1_{O}, \]
\[1_{I} \otimes o = o \otimes 1_{I} = o \otimes o_{I,I} = o_{I,I} \otimes o = o, \]
\[1_{I} \otimes o_{I,I} = o_{I,I} \otimes 1_{I} = o_{I,I} \otimes o_{I,I} = o_{I,I}, \]
\[1_{I} \otimes 1_{I} = 1_{I}. \]

It is easy to show that a \(dhts \)-category is a \(ds \)-category and each \(dts \)-category is a \(dhts \)-category too. Moreover, every Hoehnke category is a \(dhts \)-category, every \(d\nabla s \)-category is a \(dh\nabla s \)-category and each di-Hoehnke category is a \(dhth\nabla s \)-category. Altogether, there are the inclusions between the classes \(s_{-}C \) of symmetric monoidal categories, \(ds_{-}C \) of \(ds \)-categories, \(dhts_{-}C \) of \(dhts \)-categories, \(dh\nabla s_{-}C \) of \(dh\nabla s \)-categories, \(dts_{-}C \) of \(dts \)-categories, \(d\nabla s_{-}C \) of \(d\nabla s \)-categories, \(dhth\nabla s_{-}C \) of \(dhth\nabla s \)-categories, \(Hoe_{-}C \) of Hoehnke categories, and \(di-Hoe_{-}C \) of di-Hoehnke categories, respectively, as described in Figure 1.
Of importance is the fact that the relation \leq, defined by

$$\varphi \leq \psi : \iff \exists A, B \in |K| \ (\varphi, \psi \in K[A, B] \land d_A(\varphi \otimes \psi) = \varphi d_B)$$

is a nontrivial partial order relation in each $dhts$-category as well as in each $dh\n\n\n$-category K ([18], [22]). Morphisms φ fulfilling $\varphi \leq \psi \land \varphi \neq \psi$ for any $\psi \in K$ are partial morphisms. In each Hoehnke category there exists the so-called zero morphism $o_{I,I} \in K[I, I]$, which is, because of $1_I \neq o_{I,I} \leq 1_I$, a proper partial morphism. Several important subcategories exist in every $dhts$-category K as follows (cf. [8], [18]):
Categories of functors between categories with ...

\[M_{d,t}^K, \] the \(dts \)-category generated by the families \(a, r, l, s, d, \) and \(t \) in \(K \).

\[\text{Iso}_{d,t}^K, \] the \(dts \)-category generated by all isomorphisms and the families \(d \) and \(t \) in \(K \).

\[\text{Cor}^t_K, \] the \(dts \)-category generated by all coretractions and the family \(t \) in \(K \).

\[\text{Tot}_K := \{ \varphi \in K \mid \varphi \text{cod} = \varphi \text{dom} \}, \] the \(dts \)-category of all "total morphisms" in \(K \), such that

\[M_{d,t}^K \subseteq \text{Iso}_{d,t}^K \subseteq \text{Cor}^t_K \subseteq \text{Tot}_K. \]

The classes \(\text{Cen}_K \) of all morphisms generated by the unit, associativity, right- and left-identity isomorphisms, and all their inverses in \(K \) ("central morphisms"), \(\text{Iso}_K \) of all isomorphisms of \(K \), and \(\text{Cor}_K \) of all coretractions of \(K \) form always symmetric monoidal subcategories of \(K \). Moreover, \(\text{Cor}_K \) is even a \(ds \)-category since all diagonal morphisms \(d_A \) are coretractions by (DTR).

Furthermore, of interest are functors between symmetric monoidal categories which preserve this structure in a certain sense ([24]). Such functors between \(dt-, dht-, d\nabla-, dh\nabla- \), and \(dhth\nabla \)-symmetric categories, respectively, together with different kinds of "pseudonatural" transformations form certain symmetric monoidal categories ([24]).

Monoidal functors between different kinds of symmetric strictly monoidal categories \(K^\bullet \) and \(L^\bullet \) and their properties were investigated in [24], but the investigation is easily extendable to the general case.

If there is no danger of confusion, we will omit the index at the symbols \(\otimes(K) \) and \(\otimes(L) \), respectively, in the sequel.

A **monoidal functor** \(F \) from \(K^\bullet \) into \(L^\bullet \) is characterized by a family

\[\left(\tilde{F}(A, B) : AF \otimes BF \to (A \otimes B)F \mid A, B \in |K| \right) \]

of morphisms in \(L \) and a morphism \(i_F : I^{(L)} \to I^{(K)}F \in L \) such that the following conditions are fulfilled.
(F∼) ∀A, B ∈ |K| \((\tilde{F}(A, B) \in \text{Iso}_L) \),

(FI) \(i_F \in \text{Iso}_L \),

(FA) ∀A, B, C ∈ |K| \(\left(\left(1_{AF}^{(L)} \otimes \tilde{F}(B, C) \right) \tilde{F}(A, B \otimes C) \left(a_{A,B,C}^{(K)} F \right) = \right. \)
\(= a_{AF,BF,CF}^{(L)} \left(\tilde{F}(A, B) \otimes 1_{CF}^{(L)} \tilde{F}(A \otimes B, C) \right) \),

(FR) ∀A ∈ |K| \(\left(\tilde{F}(A, I^{(K)}) \right) \left(r_A^{(K)} F \right) = \left(1_{AF}^{(L)} \otimes i_F^{-1} \right) r_A^{(L)} \),

(FS) ∀A, B ∈ |K| \(\left(\tilde{F}(A, B) \right) \left(s_{A,B}^{(K)} F \right) = s_{AF,BF}^{(L)} \tilde{F}(B, A) \),

(FM) ∀A, A', B, B' ∈ |K| \(\forall \varphi \in K[A, A'] \forall \psi \in K[B, B'] \)
\(\left((\varphi F \otimes \psi F) \tilde{F}(A', B') = \tilde{F}(A, B) \left(\varphi \otimes \psi \right) F \right) \).

A monoidal functor \(F \) between \(ds \)-categories is called \(d \)-monoidal if in addition the condition

(FD) ∀A ∈ |K| \(\left(d_A^{(K)} F = d_A^{(L)} \tilde{F}(A) \right) \)

is valid. \((F, \tilde{F}, i_F)\) is called strongly monoidal (strongly \(d \)-monoidal) functor if \((F, \tilde{F}, i_F)\) is a monoidal (\(d \)-monoidal) functor having the properties

\(\forall A, B ∈ |K| \left(\tilde{F}(A, B) = 1_{AF\otimes BF}^{(L)} \right) \) and \(i_F = 1_{I(af)}^{(L)} \).

Hoehnke proved in [8] the following fact:
Let K and L be at least dhts-categories and let $p_{1}^{A,B} = (1_{A}^{(K)} \otimes t_{B}^{(K)})r_{A}^{(K)}$, $p_{2}^{A,B} = (t_{A}^{(K)} \otimes 1_{B}^{(K)})l_{B}^{(K)}$, be the so-called canonical projections in K. Then each functor $F : K \to L$ defines in a natural manner in L the morphism family

\[F^{\ast} := F^{\ast}(A, B) := d_{(A \otimes B)_{F}}^{(L)}(p_{1}^{A,B} F \otimes p_{2}^{A,B} F) \]

\[\in L[(A \otimes B)F, AF \otimes BF] \mid A, B \in |K|, \]

satisfying the identities

(FA*) $\forall A, B, C \in |K| \left(\left(a_{A,B,C}^{(K)}F \right) F^{\ast}(A \otimes B, C) \left(F^{\ast}(A, B) \otimes 1_{C}^{(L)}F \right) = F^{\ast}(A, B \otimes C) \left(1_{AF}^{(L)} \otimes F^{\ast}(B, C) \right) a_{AF,BF,CF}^{(L)} \right)$,

(FS*) $\forall A, B \in |K| \left(\left(s_{A,B}^{(K)}F \right) F^{\ast}(B, A) = F^{\ast}(A, B) s_{AF,BF}^{(L)} \right)$,

(FD*) $\forall A \in |K| \left(\left(d_{A}^{(K)}F \right) F^{\ast}(A, A) = d_{AF}^{(L)} \right)$,

(FMT*) $\forall A, A', B, B' \in |K| \forall \phi \in \textbf{Tot}_{K}[A, A'] \forall \psi \in \textbf{Tot}_{K}[B, B']$

\[(F^{\ast}(A, B)(\phi F \otimes \psi F) = (\phi \otimes \psi)FF^{\ast}(A', B'), \]

(wFR*) $\forall A \in |K| \left(F^{\ast}(A, I) \left(1_{AF}^{(L)} \otimes t_{IF}^{(L)} \right) r_{AF}^{(L)} \leq r_{A}^{(K)} F \right)$,

(wFL*) $\forall A \in |K| \left(F^{\ast}(I, A) \left(t_{IF}^{(L)} \otimes 1_{AF}^{(L)} \right) l_{AF}^{(L)} \leq l_{A}^{(K)} F \right)$,
(wFM*) \(\forall A, A', B, B' \in |K| \forall \varphi \in K[A, A'] \forall \psi \in K[B, B'] \\
((\varphi \otimes \psi) FF^*(A', B') \leq F^*(A, B)(\varphi F \otimes \psi F')). \]

Moreover, there is the morphism \(t_{I(K)F}^{(L)} \in L[I(K)F, I(L)] \). In the case that \(F \)
is a \(d \)-monoidal functor with respect to \(\tilde{F} \) and \(i_F \), one obtains

\[
\forall A, B \in |K| \left(F^*(A, B) = \left(\tilde{F}(A, B) \right)^{-1} \right),
\]

\[t_{I(K)F}^{(L)} = (i_F)^{-1}, \]

and

(FT) \(\forall A \in |K| \left(t_A^{(K)} F t_{I(K)F}^{(L)} = t_A^{(L)} \right). \]

Conversely, let \(F \) be a functor between \(dhts \)-categories \(K \) and \(L \) such that
all morphisms \(F^*(A, B) \) and \(t_{I(K)F}^{(L)} \) are isomorphisms in \(L \) and the condition

(FM*) \(\forall A, A', B, B' \in |K| \forall \varphi \in K[A, A'] \forall \psi \in K[B, B'] \\
((\varphi \otimes \psi) FF^*(A', B') = F^*(A, B)(\varphi F \otimes \psi F)) \)

is true.

Then \((F, (F^*)^{-1}, (t_{I(K)F}^{(L)})^{-1}) : K \rightarrow L\) is a \(d \)-monoidal functor ([8], [24]).

Moreover, let \(F \) be a functor fulfilling (FM*) such that

(sF*) \(\forall A, B \in |K| \left(F^*(A, B) = 1_{(A \otimes B)F}^{(L)} \right) \) and

(sFI*) \(t_{I(K)F}^{(L)} = 1_{I(L)}^{(L)} \)

are satisfied. Then \((F, (1_{(A \otimes B)F}^{(L)} | A, B \in |K|), 1_{I(L)}^{(L)})\) is a strongly \(d \)-monoidal
functor.
Categories of functors between categories with ... 51

Example. A simple example of a monoidal functor between symmetric monoidal categories K^* and L^* is given by (E, \tilde{E}, i_E) with the properties

$\forall A \in |K| (AE = I^{(L)}), \forall \varphi \in K (\varphi E = 1^{(L)}_{I^{(L)}}), \forall A, B \in |K| (\tilde{E}(A, B) = r^{(L)}_{I^{(L)}}), i_E = 1^{(L)}_{I^{(L)}}$.

Let K and L be $dhts$-categories. Then the functor $E : K \to L$ is even d-monoidal, since:

$\forall A, B \in |K| \left(E^*(A, B) = d^{(L)}_{I^{(L)}E} \left(p_1^{A,B} E \otimes p_2^{A,B} E \right) = d^{(L)}_{I^{(L)}} \in \text{Iso}_L \right),$ \hspace{1cm} (1)

$t^{(L)}_{I(K)} E = t^{(L)}_{I(L)} = 1^{(L)}_{I(L)} \in \text{Iso}_L,$ and

$\forall A, A', B, B' \in |K| \forall \varphi \in K[A, A'] \forall \psi \in K[B, B']$

$\left((\varphi \otimes \psi) E E^*(A', B') = 1^{(L)}_{I^{(L)}}, d^{(L)}_{I^{(L)}} \right)$ \hspace{1cm} (2)

$= d^{(L)}_{I^{(L)}} \left(1^{(L)}_{I(L)} \otimes 1^{(L)}_{I(L)} \right) = E^*(A, B) (\varphi E \otimes \psi E).$ \hspace{1cm} (3)

Remark. Hoehnke introduced in [8] the concept of a dht-symmetric functor between Hoehnke categories. This concept differs from that of a d-monoidal functor presented here as follows:

Instead of (FM) Hoehnke demands the weaker condition

(FMT) $\forall A, A', B, B' \in |K| \forall \varphi \in \text{Tot}_K[A, A'] \forall \psi \in \text{Tot}_K[B, B']$

$\left((\varphi F \otimes \psi F) \tilde{F}(A', B') = \tilde{F}(A, B) (\varphi \otimes \psi) F \right)$

and instead of (FI) the fact $t^{(L)}_{I(K)} F F^1 = 1^{(L)}_{I(F)}$ for a suitable morphism F^1 in L.

A *Hoehnke functor* \(F : K \to L \) is, by definition, a \(d \)-monoidal functor which preserves the zero object, i.e. \(O^K = O^L \), or it is one of the functors \(U \)

\[
(\forall A \in |K| \ (AU = O^L), \ \forall \varphi \in K \ (\varphi U = 1^L_{O(L)})) \text{ or } E \text{ as above.}
\]

Functors between symmetric monoidal categories which preserve the whole symmetric monoidal structure directly are of importance for the further considerations.

Lemma 1.1 (cf. [24]). Let \(F : K^\bullet \to L^\bullet \) be an arbitrary functor between the symmetric monoidal categories \(K^\bullet \) and \(L^\bullet \) possessing the properties

\[
\begin{align*}
\text{(sFI)} & \quad I^K F = I^L, \\
\text{(sFA)} & \quad \forall A, B, C \in |K| \left(a^{(K)}_{A,B,C} F = a^{(L)}_{AF,BF,CF} \right), \\
\text{(sFR)} & \quad \forall A \in |K| \left(r^{(K)}_A F = r^{(L)}_{AF} \right), \\
\text{(sFS)} & \quad \forall A, B \in |K| \left(s^{(K)}_{A,B} F = s^{(L)}_{AF,BF} \right), \\
\text{(sFM)} & \quad \forall A, A', B, B' \in |K| \forall \varphi \in K[A, A'] \forall \psi \in K[B, B'] \\
& \quad \left((\varphi F \otimes \psi F) = (\varphi \otimes \psi) F \right).
\end{align*}
\]

Then \((F, (1^{(L)}_{AF \otimes BF} | A, B \in |K|, 1^{(L)}_{I^L})) \) is a strongly monoidal functor and

\[
\text{(sFL)} \quad \forall A \in |K| \left(l^{(K)}_A F = l^{(L)}_{AF} \right)
\]

is right.

If in addition \(K \) and \(L \) are \(ds \)-categories and \(F \) has the property
(sFD) \(\forall A \in |K| \left(d^{(K)}_A F = d^{(L)}_{AF} \right) \),

then \((F, (1^{(L)}_{AF \otimes BF} | A, B \in |K|), 1^{(L)}_{I(L)}) \) is a strongly \(d \)-monoidal functor.

Proof. First, for all \(A, B \in |K| \),

\[
\begin{align*}
1^{(L)}_{(A \otimes B)F} = 1^{(K)}_{AF} F &= \left(1^{(K)}_A \otimes 1^{(K)}_B \right) F \\
= 1^{(K)}_A F \otimes 1^{(K)}_B F &= 1^{(L)}_{AF} \otimes 1^{(L)}_{BF} = 1^{(L)}_{AF \otimes BF}
\end{align*}
\]

by the properties of symmetric monoidal categories and the usual functor properties, hence

\[
\forall A, B \in |K| \left((A \otimes B)F = AF \otimes BF \right).
\]

All unit morphisms are isomorphism, therefore \((F\sim)\) is true for \(\tilde{F}(A, B) := 1^{(L)}_{AF \otimes BF} \) and there is the morphism \(i_F = 1^{(L)}_{I(L)} \in L[I^{(L)}, I^{(K)}F] \). With respect to the suitable unit morphisms, the conditions \((FI), (FA), (FR), (FS), \) and \((FM)\) are fulfilled via \((sFI), (sFA), (sFR), (sFS), \) and \((sFM)\), respectively.

Let \(K \) and \(L \) be \(ds \)-categories. Then \((FD)\) is a trivial consequence of \((sFD)\).

Corollary 1.2. Let \(F \) be a functor between \(dh\n s\)-categories which has the properties \((sFI), (sFA), (sFR), (sFS), \) and \((sFM)\), and \((sFD)\). Then \(F \) has the property

\[
(s\n) \forall A \in |K| \left(\nabla^{(K)}_A F = \nabla^{(L)}_{AF} \right).
\]

Proof. For an arbitrary object \(A \) in \(K \), the equations

\[
d^{(K)}_A \nabla^{(K)}_A = 1^{(K)}_A \quad \text{and} \quad d^{(K)}_{AF} \left(\nabla^{(K)}_A \otimes 1^{(K)}_{AF} \right) = \nabla^{(K)}_{AF} d^{(K)}_A \nabla^{(K)}_A
\]
are valid, hence
\[1^{(L)}_{AF} = 1^{(K)}_A F = \left(d^{(K)}_A \nabla^{(K)}_A \right) F = d^{(K)}_A F \nabla^{(K)}_A F = d^{(L)}_{AF} \left(\nabla^{(K)}_A F \right) \]
and
\[d^{(L)}_{AF \otimes AF} \left(\left(\nabla^{(K)}_A F \right) d^{(L)}_{AF} \otimes 1^{(L)}_{AF \otimes AF} \right) = \]
\[= \left(d^{(K)}_{A \otimes A} F \right) \left(\nabla^{(K)}_A F \right) \left(d^{(K)}_A F \otimes 1^{(K)}_{A \otimes A} \right) \] (by (sFD))
\[= \left(d^{(K)}_{A \otimes A} \left(\nabla^{(K)}_A d^{(K)}_A \otimes 1^{(K)}_{A \otimes A} \right) \right) F = \] (by (sFM))
\[= \left(\nabla^{(K)}_A d^{(K)}_A \right) F = \] (by (sFD))
\[= \left(\nabla^{(K)}_A F \right) d^{(L)}_{AF} d^{(L)}_{AF \otimes AF}. \]

Since there is at most one morphism family in any \(dhv\)-category which fulfills both identities with respect to the diagonal morphisms (cf. [18]), one receives the claim.

Lemma 1.3 ([24]). Let \(K \) and \(L \) be at least \(dhv\)-categories and let \(F : K \to L \) be a functor between the underlying categories fulfilling the conditions (sFM) and
\[(sFT) \quad \forall A \in |K| \quad (t^{(K)}_A F = t^{(L)}_{AF}). \]

Then
\[(F*) \quad \forall A, B \in |K| \quad (F^* \langle A, B \rangle) = d^{(L)}_{(A \otimes B)F} (p_1^{A,B} F \otimes p_2^{A,B} F) \in \text{Iso}_L \] and
are right, where the properties \(\text{(sFI}^* \text{)} \) and \(\text{(sFI)} \) are equivalent.

Moreover, the functor \(F \) possesses in addition even the properties \(\text{(sF}^* \text{), (sFA), (sFR), (sFL), and (sFS)}, \) whenever \(F \) fulfils beside \(\text{(sFT)} \) and \(\text{(sFM)} \) the condition \(\text{(sFD)} \).

In other words, \((F, (1^{(L)}_{AF \otimes BF} \mid A, B \in |K|, 1^{(L)}_{I(L)}) \) is a strongly \(d \)-monoidal functor between \(dhts \)-categories, whenever \(\text{(sFM), (sFT), and (sFD)} \) are right.

Proof. Putting \(A = I^{(K)} \) in \(\text{(sFT)} \), one obtains \(1^{(L)}_{I^{(K)}F} = 1^{(K)}_F = t^{(L)}_{I^{(K)}F} \), hence \(I^{(K)}F = \text{dom}(L)(1^{(L)}_{I^{(K)}F}) = \text{dom}(L)(t^{(L)}_{I^{(K)}F}) = I^{(L)} \), thus \(t^{(L)}_{I^{(K)}F} = t^{(L)}_{I^{(L)}} = 1^{(L)}_{I^{(L)}} \).

The equivalence of \(\text{(sFI)} \) and \(\text{(sFI}^* \text{)} \) is obvious.

As already proved, \(\forall A, B \in |K| ((A \otimes B)F = AF \otimes BF) \) (cf. Lemma 1.1), therefore via \(\text{(sFT)} \),

\[
F^*(A, B) = d^{(L)}_{AF \otimes BF} \left(\left(1^{(L)}_{AF} \otimes t^{(L)}_{BF} \right) \otimes \left(t^{(L)}_{AF} \otimes 1^{(L)}_{BF} \right) \right) \left(r^{(K)}_A F \otimes t^{(K)}_B F \right) \in \text{Iso}_L,
\]

since \(d^{(L)}_{AF \otimes BF}((1^{(L)}_{AF} \otimes t^{(L)}_{BF}) \otimes (t^{(L)}_{AF} \otimes 1^{(L)}_{BF}))(r^{(L)}_A \otimes t^{(L)}_B) = 1^{(L)}_{AF \otimes BF} \)

and \(r^{(K)}_A F \) and \(t^{(K)}_B F \) are isomorphisms too.

Assuming the validity of \(\text{(sFD)} \), one receives

\[
F^*(A, B) = d^{(L)}_{AF \otimes BF} \left(\left(1^{(L)}_{AF} \otimes t^{(L)}_{BF} \right) \otimes \left(t^{(L)}_{AF} \otimes 1^{(L)}_{BF} \right) \right) \left(r^{(K)}_A F \otimes t^{(K)}_B F \right)
\]

\[
= (d^{(L)}_{AF} \otimes d^{(L)}_{BF}) b^{(L)}_{AF, AF, BF, BF} \left(\left(1^{(L)}_{AF} \otimes t^{(L)}_{BF} \right) \otimes (t^{(L)}_{AF} \otimes 1^{(L)}_{BF}) \right) \left(r^{(K)}_A F \otimes t^{(K)}_B F \right) = (\text{by (D4) in } L) \]
\[
\begin{align*}
&= (d^{(L)}_{AF} \otimes d^{(L)}_{BF}) \left((1^{(L)}_{AF} \otimes t^{(L)}_{AF}) \otimes (t^{(L)}_{BF} \otimes 1^{(L)}_{BF}) \right) b^{(L)}_{AF,I^{(K)}F,F,BF} \left(r^{(K)}_A F \otimes l^{(K)}_B F \right) = \\
&= \left(d^{(L)}_{AF} \left(1^{(L)}_{AF} \otimes t^{(L)}_{AF} \right) \otimes d^{(L)}_{BF} \left(t^{(L)}_{BF} \otimes 1^{(L)}_{BF} \right) \right) b^{(L)}_{AF,I^{(L)},I^{(I)},BF} \left(r^{(K)}_A F \otimes l^{(K)}_B F \right) = \\
&= \left(d^{(L)}_{AF} \left(1^{(L)}_{AF} \otimes t^{(L)}_{AF} \right) r^{(K)}_A F \otimes d^{(L)}_{BF} \left(l^{(L)}_{BF} \otimes 1^{(L)}_{BF} \right) l^{(K)}_B F \right) = \\
&= \left(d^{(K)}_A F \left(1^{(K)}_A F \otimes l^{(K)}_A F \right) r^{(K)}_A F \otimes d^{(K)}_B F \left(l^{(K)}_B F \otimes 1^{(K)}_B F \right) l^{(K)}_B F \right) = \\
&= \left(\left(d^{(K)}_A F \left(1^{(K)}_A \otimes l^{(K)}_A \right) \right) F \otimes \left(d^{(K)}_B \left(l^{(K)}_B \otimes 1^{(K)}_B \right) \right) F \right) = \\
&= \left(1^{(K)}_A F \otimes l^{(K)}_B F \right) = 1^{(L)}_{AF \otimes BF}.
\end{align*}
\]

Since \(t^{(L)}_{I^{(K)}F} = t^{(L)}_{I^{(L)}} \) is an isomorphism, all \(F^* \langle A, B \rangle = 1^{(L)}_{AF \otimes BF} \) are isomorphisms and (sFM) is expected, \((F, 1^{(L)}_{AF \otimes BF} \mid A, B \in |K|), 1^{(L)}_{I^{(L)}} \) is a \(d \)-monoidal functor between the \textit{dhts}-categories \(K \) and \(L \), therefore the conditions (sFA), (sFR), (sFL), and (sFS) are fulfilled.

\textbf{Example.} Let \(K^\bullet \) be a symmetric monoidal category. Then \(\Theta_K : K \to \Omega \), defined by \((A \mapsto I, \varphi \mapsto 1_I) \), is a strongly monoidal \((d\text{-monoidal}) \) functor with respect to \(\tilde{\Theta}_K \left(\Theta_K \langle A, B \rangle := 1_I \right) \) and \(i_{\Theta_K} := 1_I. \)
2. The cartesian product of categories

It is well-known that two categories K and L determine a new category $K \times L$, the so-called cartesian product, consisting of objects $(A, B), A \in \vert K \vert, B \in \vert L \vert$ and morphisms $(\varphi, \psi), \varphi \in K, \psi \in L$, where the structure of $K \times L$ is defined via the components in the ordered pairs by the structure in K and L, respectively.

The cartesian product $(K \times L)^\bullet$ of symmetric monoidal categories K^\bullet and L^\bullet is a symmetric monoidal category too. More precisely:

Proposition 2.1. Let K^\bullet and L^\bullet be symmetric monoidal categories. Then all ordered pairs (A, B) of objects $A \in \vert K \vert$ and $B \in \vert L \vert$ together with all ordered pairs (φ, ψ) of morphisms $\varphi \in K$ and $\psi \in L$ form in a natural manner a symmetric monoidal category $(K \times L)^\bullet$, where the monoidal structure is defined componentwise:

$$(A_1, B_1) \otimes (A_2, B_2) := (A_1 \otimes_K A_2, B_1 \otimes_L B_2),$$

$$(\varphi_1, \psi_1) \otimes (\varphi_2, \psi_2) := (\varphi_1 \otimes_K \varphi_2, \psi_1 \otimes_L \psi_2),$$

$$I := (I^{(K)}, I^{(L)}), \quad a_{(A_1, A_2), (B_1, B_2), (C_1, C_2)} := \left(a^{(K)}_{A_1, B_1, C_1}, a^{(L)}_{A_2, B_2, C_2}\right),$$

$$r_{(A_1, A_2)} := \left(r^{(K)}_{A_1}, r^{(L)}_{A_2}\right), \quad l_{(A_1, A_2)} := \left(l^{(K)}_{A_1}, l^{(L)}_{A_2}\right),$$

$$s_{(A_1, A_2), (B_1, B_2)} := \left(s^{(K)}_{A_1, B_1}, s^{(L)}_{A_2, B_2}\right).$$

Moreover, if two symmetric monoidal categories possess additional properties concerning the monoidal structure, then the cartesian product $(K \times L)^\bullet$ has the same properties, especially:

Defining in addition

$$d_{(A_1, A_2)} := \left(d^{(K)}_{A_1}, d^{(L)}_{A_2}\right), \quad t_{(A_1, A_2)} := \left(t^{(K)}_{A_1}, t^{(L)}_{A_2}\right),$$
\[\nabla_{(A_1,A_2)} := \left(\nabla^{(K)}_{A_1}, \nabla^{(L)}_{A_2}\right),\]

\[O := \left(O^{(K)}, O^{(L)}\right), \quad o := \left(o^{(K)}, o^{(L)}\right),\]

respectively, one obtains a \(d_\mathcal{S}\), \(d_{\mathcal{T}_S}\), \(d_{\mathcal{H}_S}\), \(d_{\nabla_\mathcal{S}}\), \(dh_{\nabla_\mathcal{S}}\)-category, Hoehnke category, and di-Hoehnke category \(K \times L\), respectively, whenever \(K\) and \(L\) are \(d_\mathcal{S}\), \(d_{\mathcal{T}_S}\), \(d_{\mathcal{H}_S}\), \(d_{\nabla_\mathcal{S}}\), \(dh_{\nabla_\mathcal{S}}\)-categories, Hoehnke categories, and di-Hoehnke categories.

The necessary proofs of all the presented assertions are easy to do and will be left to the reader.

3. Composition of functors

Besides the \(\otimes\)-operation for functors between symmetric monoidal categories, investigated in [24] and already introduced in [8] by

\[A(F \otimes G) := AF \otimes AG, \quad \varphi(F \otimes G) := \varphi F \otimes \varphi G,\]

there is the usual composition of functors \(F : \mathcal{K} \rightarrow \mathcal{L}\) and \(G : \mathcal{L} \rightarrow \mathcal{P}\).

Lemma 3.1 (cf. [8]). Let \((F, \tilde{F}, i_F) : \mathcal{K} \rightarrow \mathcal{M}\) and \((G, \tilde{G}, i_G) : \mathcal{M} \rightarrow \mathcal{P}\) be monoidal functors between symmetric monoidal categories. Then \(\tilde{F} \tilde{G} : \mathcal{K} \rightarrow \mathcal{P}\), defined by the usual functor composition, is a monoidal functor with respect to

\[\tilde{F} \tilde{G} := \left(\tilde{F} \tilde{G}(A,B) = \tilde{G}(AF,BF)(\tilde{F}(A,B)G) \mid A,B \in |K|\right)\]

and \(i_{\tilde{F} \tilde{G}} := i_G(i_F G)\).

\((\tilde{F} \tilde{G}, i_{\tilde{F} \tilde{G}})\) is a strongly monoidal functor whenever both \((F, \tilde{F}, i_F)\) and \((G, \tilde{G}, i_G)\) are strongly monoidal functors.

Finally, \(1(\mathcal{K}) \tilde{F} = \tilde{F} 1(\mathcal{M})\) for all monoidal functors \(F\), where \(1(\mathcal{K})\) is the identical functor of \(\mathcal{K}\).

Proof. Each morphism of the kind \(\tilde{G}(AF,BF)(\tilde{F}(A,B)G)\) is an isomorphism in \(\mathcal{P}\), since \(\forall A', B' \in |M| \ (\tilde{G}(A', B') \in \text{Iso}_\mathcal{P}), \forall A, B \in |K| \ (\tilde{F}(A, B) \in \text{Iso}_\mathcal{M})\), and every functor preserves isomorphisms. For the same reason,
\[i_G \in \text{Iso}_P \land i_F \in \text{Iso}_M \Rightarrow i_{FG} = i_G(i_F G) \in \text{Iso}_P \cap P[I^{(P)}, I(FG)]. \]

To prove the conditions (FA), (FR), (FS), and (FM) for \((FG, \widetilde{FG}, i_{FG})\) one uses in a natural manner the properties of functors, the properties of symmetric monoidal categories, and the properties of the monoidal functors \((F, \tilde{F}, i_F)\) and \((G, \tilde{G}, i_G)\), respectively, as follows, where \(A, B, C, D\) are arbitrary objects of \(K\):

Ad (FA):

Using the validity of the condition (FA) for the functors \(F\) and \(G\) one obtains

\[
\left(1^{(P)}_{A(FG)} \otimes \widetilde{FG}(B, C)\right) \widetilde{FG}(A, B \otimes C) a^{(K)}_{A, B, C, G}(FG) = \\
= \left(1^{(P)}_{A(FG)} \otimes \tilde{G}(BF, CF) \left(\tilde{F}(B, C)\right) G\right) \tilde{G}(AF, (B \otimes C)F) \\
\quad \left(\tilde{F}(A, B \otimes C)\right) G \left(a^{(K)}_{A, B, C, F}\right) G = \\
= \left(1^{(P)}_{A(FG)} \otimes \tilde{G}(BF, CF)\right) \left(\left(1^{(M)}_{AF} \otimes \tilde{F}(B, C)\right) G\right) \tilde{G}(AF, (B \otimes C)F) \\
\quad \left(\tilde{F}(A, B \otimes C)\right) G \left(a^{(K)}_{A, B, C, F}\right) G = \\
= \left(1^{(P)}_{A(FG)} \otimes \tilde{G}(BF, CF)\right) \tilde{G}(AF, BF \otimes CF) \\
\quad \left(\left(1^{(M)}_{AF} \otimes \tilde{F}(B, C)\right) \left(\tilde{F}(A, B \otimes C)\right) a^{(K)}_{A, B, C, F}\right) G = \\
= \left(1^{(P)}_{A(FG)} \otimes \tilde{G}(BF, CF)\right) \tilde{G}(AF, BF \otimes CF) \\
\quad \left(1^{(M)}_{AF} \otimes \tilde{F}(B, C) a^{(K)}_{AF, BF, CF}\right) G = \\
= \left(1^{(P)}_{A(FG)} \otimes \tilde{G}(BF, CF)\right) \tilde{G}(AF, BF \otimes CF) \\
\quad \left(a^{(M)}_{AF, BF, CF} \left(\tilde{F}(A, B) \otimes 1^{(M)}_{CF}\right) \tilde{F}(A \otimes B, C)\right) G =
\]
\[
\begin{align*}
&= \left(1_{A(FG)}^{(P)} \otimes \tilde{G}(BF,CF)\right) \tilde{G}(AF,BF \otimes CF) \left(a_{AF,BF,CF}^{(M)}\right) G \\
&= \left(\left(\tilde{F}(A,B) \otimes 1_{CF}^{(M)}\right) \tilde{F}(A \otimes B,C)\right) G = \\
&= a_{(AF)G,(BF)G,(CF)G}^{(P)} \left(\tilde{G}(AF,BF) \otimes 1_{(CF)G}^{(P)}\right) \tilde{G}(AF \otimes BF,CF) \\
&= a_{(AF)G,(BF)G,(CF)G}^{(P)} \left(\tilde{G}(AF,BF) \otimes 1_{(CF)G}^{(P)}\right) \tilde{G}(AF \otimes BF,CF) \left(\tilde{F}(A,B) \otimes 1_{CF}^{(M)}\right) G \left(\tilde{F}(A \otimes B,C)\right) G = \\
&= a_{(AF)G,(BF)G,(CF)G}^{(P)} \left(\tilde{G}(AF,BF) \otimes 1_{(CF)G}^{(P)}\right) \left(\tilde{F}(A,B)\right) G \otimes 1_{CF}^{(M)} G \tilde{G}\{A \otimes B)F,CF\} \left(\tilde{F}(A \otimes B,C)\right) G = \\
&= a_{(AF)G,(BF)G,(CF)G}^{(P)} \left(\tilde{G}(AF,BF) \left(\tilde{F}(A,B)\right) G \otimes 1_{(CF)G}^{(P)}\right) \tilde{G}\{(A \otimes B)F,CF\} \left(\tilde{F}(A \otimes B,C)\right) G = \\
&= a_{(AF)G,(BF)G,(CF)G}^{(P)} \left(\tilde{F}G(A,B) \otimes 1_{(CF)G}^{(P)}\right) \tilde{F}G(A \otimes B,C). \\
\end{align*}
\]

Ad (FR):
Since \(F\) and \(G\) both fulfil (FR), the following is true:

\[
\begin{align*}
\tilde{F}G(A,I^{(K)})r^{(K)}_A (FG) = \\
&= \tilde{G}\{AF,I^{(K)}F\} \left(\tilde{F}(A,I^{(K)})G\right) \left(r^{(K)}_A \right) F G = \\
&= \tilde{G}\{AF,I^{(K)}F\} \left(\tilde{F}(A,I^{(K)})r^{(K)}_A \right) F G = \\
&= \tilde{G}\{AF,I^{(K)}F\} \left(\left(1_{AF}^{(M)} \otimes i_F^{-1}\right) r^{(M)}_{AF}\right) G = \\
\end{align*}
\]
\[\widetilde{G} \langle AF, I^{(K)}F \rangle \left(1_{AF}^{(M)} \otimes i_F^{-1}\right) G r_{AF}^{(M)} G = \]

\[= \left(1_{AF}^{(M)} G \otimes i_F^{-1} G\right) \widetilde{G} \langle AF, I^{(M)} \rangle r_{AF}^{(M)} G = \]

\[= \left(1_{A(FG)}^{(P)} \otimes (i_{FG})^{-1}\right) \left(1_{(AF)G}^{(P)} \otimes i_G^{-1}\right) r_{(AF)G}^{(P)} = \]

\[= \left(1_{A(FG)}^{(P)} \otimes (i_G(i_{FG}))^{-1}\right) r_{A(FG)}^{(P)} = \left(1_{A(FG)}^{(P)} \otimes (i_{FG})^{-1}\right) r_{A(FG)}^{(P)}. \]

Ad (FS):
The functor \(FG \) has this property since

\[\widetilde{FG} \langle A, B \rangle s_{A,B}(FG) = \widetilde{G} \langle AF, BF \rangle \left(\widetilde{F} \langle A, B \rangle s_{A,B} F \right) G = \]

\[= \widetilde{G} \langle AF, BF \rangle \left(s_{AF,BF}^{(M)} \widetilde{F} \langle B, A \rangle \right) G = \widetilde{G} \langle AF, BF \rangle \left(s_{AF,BF}^{(M)} \left(\widetilde{F} \langle B, A \rangle \right) \right) G = \]

\[= \left(s_{A(FG),B(FG)}^{(P)} \widetilde{G} \langle BF, AF \rangle \left(\widetilde{F} \langle B, A \rangle \right) \right) G = \left(s_{A(FG),B(FG)}^{(P)} \right) \widetilde{FG} \langle B, A \rangle \]

via the definition of \(\widetilde{FG} \) and the validity of (FS) for \(F \) and \(G \).

Ad (FM):
Let \(\varphi \in K[A,C], \psi \in K[B,D] \) be arbitrary morphisms of \(K \). Then

\[\widetilde{FG} \langle A, B \rangle (\varphi \otimes \psi)(FG) = \widetilde{G} \langle AF, BF \rangle \left(\widetilde{F} \langle A, B \rangle \right) G((\varphi \otimes \psi)F)G = \]

\[= \widetilde{G} \langle AF, BF \rangle \left(\left(\widetilde{F} \langle A, B \rangle \right) (\varphi \otimes \psi) F \right) G = \]

\[= \widetilde{G} \langle AF, BF \rangle \left((\varphi F \otimes \psi F) \widetilde{F} \langle C, D \rangle \right) G = \]

\[= \widetilde{G} \langle AF, BF \rangle (\varphi F \otimes \psi F)G \left(\widetilde{F} \langle C, D \rangle \right) G = \]

\[= ((\varphi F)G \otimes (\psi F)G) \widetilde{G} \langle CF, DF \rangle \left(\widetilde{F} \langle C, D \rangle \right) G = \]

\[= (\varphi(FG) \otimes \psi(FG)) \widetilde{FG} \langle C, D \rangle. \]
Now let \((F, \tilde{F}, i_F)\) and \((G, \tilde{G}, i_G)\) be strongly monoidal functors. Then
\[
\forall A, B \in |K| \left(\tilde{F}(A, B) = 1^{(M)}_{A \otimes BF} \right) \land \forall X, Y \in |M| \left(\tilde{G}(X, Y) = 1^{(P)}_{XG \otimes YG} \right),
\]
therefore
\[
\forall A, B \in |K| \left(\tilde{F}G(A, B) = 1^{(P)}_{(AF \otimes BF)G} \right) G = 1^{(P)}_{(AF \otimes BF)G} 1^{(P)}_{G} = 1^{(P)}_{A(FG) \otimes B(FG)}.
\]
Because of \(i_F = 1^{(M)}_{I(M)}\) and \(i_G = 1^{(P)}_{I(P)}\) one obtains
\[
i_{FG} = i_G(i_F)G = 1^{(P)}_{I(P)} 1^{(M)}_{I(M)} G = 1^{(P)}_{I(P)}
\]
Obviously, the validity of \((sFA), (sFR), (sFS),\) and \((sFM)\) is transmitted from \(F\) and \(G\) to the functor \(FG\).

Theorem 3.2. The class \(|\text{MON}|\) of all small symmetric monoidal categories together with the monoidal functors between them forms a category MON.

All strongly monoidal functors establish a subcategory \(|\text{sMON}|\) of MON.

Proof. There is the identical functor \(1\langle K \rangle\) to each symmetric monoidal category \(K^\bullet\) and \(1\langle K \rangle\) is a monoidal functor with respect to
\[
\tilde{1}\langle K \rangle = \left\{ 1^{(K)}_{A \otimes B} \mid A, B \in |K| \right\} \quad \text{and} \quad i_{1\langle K \rangle} = 1^{(K)}_{I(K)}.
\]
Because of Lemma 3.1, the composition of two monoidal functors is a monoidal functor too and
\[
\left(1\langle K \rangle, \tilde{1}\langle K \rangle, i_{1\langle K \rangle}\right)(F, \tilde{F}, i_F) = (F, \tilde{F}, i_F)(1\langle M \rangle, \tilde{1}\langle M \rangle, i_{1\langle M \rangle})
\]
for every monoidal functor \((F, \tilde{F}, i_F) : K^\bullet \to M^\bullet\), since
The usual functor composition is associative, i.e. $F(GH) = (FG)H$. Moreover, for all objects A and B of K the following is true:

\[
\tilde{F}(G)\langle A, B \rangle = \tilde{F}(A) \left(\tilde{F}(B) \right) = \tilde{F}(A, B) = \tilde{F}(A) \tilde{F}(B) = \tilde{F}(\langle A \cdot B \rangle) = \tilde{F}(A) \tilde{F}(B).
\]

The assertion concerning strongly monoidal functors is obvious.

Corollary 3.3. There are the following subcategories of MON. The class

- $|d\text{MON}|$ of all small d-categories together with the d-monoidal functors between them forms a category $d\text{MON}$,

- $|dht\text{MON}|$ of all small $dhts$-categories together with the d-monoidal functors between them forms a category $dht\text{MON}$,
• $|\text{HOE}|$ of all small Hoehnke categories together with the Hoehnke functors between them forms a category HOE,

• $|\text{dh}\n\text{MON}|$ of all small $\text{dh}\n\text{s}$-categories together with the d-monoidal functors between them forms a category $\text{dh}\n\text{MON}$,

• $|\text{dtMON}|$ of all small $\text{dt}s$-categories together with the d-monoidal functors between them forms a category dtMON,

• $|\text{dhth}\n\text{MON}|$ of all small $\text{dhth}\n\text{s}$-categories together with the d-monoidal functors between them forms a category $\text{dhth}\n\text{MON}$,

• $|\text{di-HOE}|$ of all small di-Hoehnke categories together with the Hoehnke functors between them forms a category di-HOE,

• $|\text{dMON}|$ of all small $\text{d}s$-categories together with the d-monoidal functors between them forms a category dMON.

Proof. By Theorem 3.2, it remains to show that the composition of two d-monoidal functors is d-monoidal too. This is true because of

$$d^{(K)}_A(FG) = \left(d^{(K)}_A\right)F = \left(d^{(M)}_{AF}\tilde F\langle A, A \rangle\right)G = \left(d^{(M)}_{AF}\tilde F\langle A, A \rangle\right)G = \left(d^{(M)}_{AF}
ight)\tilde F\langle A, A \rangle.$$

One has for strongly monoidal functors F and G immediately:

$$d^{(K)}_A(FG) = \left(d^{(K)}_A\right)F = \left(d^{(M)}_{AF}\tilde F\langle A, A \rangle\right)G = \left(d^{(M)}_{AF}\tilde F\langle A, A \rangle\right)G = \left(d^{(M)}_{AF}\right)\tilde F\langle A, A \rangle = \left(d^{(M)}_{AF}\right).$$

The diagram in Figure 2 illustrates the mutual inclusions in the general case.

Similarly, one has the subcategories sdMON, sdhtMON, sHOE, sdh\nMON, sdhth\nMON, sd-i-HOE, sdtMON, and sd\nMON of sMON in the case of strongly monoidal functors, i.e. a similar diagram for the subcategories of all strongly monoidal functors.
Hoehnke proved in [8] (Theorem 6.1) that “the composition $FG : \mathcal{K} \to \mathcal{K}''$ of two dht-symmetric functors $F : \mathcal{K} \to \mathcal{K}'$, $G : \mathcal{K}' \to \mathcal{K}''$ is again dht-symmetric ...”. In addition to this result one receives:

Lemma 3.4. Let \mathcal{K}, \mathcal{M}, \mathcal{P} be $dhts$-categories and let $F : \mathcal{K} \to \mathcal{M}$, $G : \mathcal{M} \to \mathcal{P}$ be functors. Then FG satisfies

$$(\text{FC}^*) \quad \forall A, B \in |\mathcal{K}| \quad ((FG)^*(A, B) = (F^*(A, B))G^*(AF, BF))$$
and

\[\forall A, B \in |K| \ ((FG)^*(A, B) \in \text{Iso}_P), \]

whenever

\[\forall A, B \in |K| \ (F^*(A, B) \in \text{Iso}_M) \text{ and } \forall X, Y \in |M| \ (G^*(X, Y) \in \text{Iso}_P). \]

Moreover, let \(F \) and \(G \) fulfil \((FT)\). Then \(FG \) also has the property \((FT)\).

Proof. Ad \((FC^*)\):

\[(FG)^*(A, B) = \varphi_{(A \otimes B)}(FG)((p_1 A, B) \otimes (p_2 A, B))(FG) = \]

\[= \varphi_{(A \otimes B)}(FG)((p_1 A, B) \otimes (p_2 A, B))GG^*(AF, BF) = \]

(by functor property)

\[= \left(\varphi_{(A \otimes B)}(FG) \right) G((p_1 A, B) \otimes (p_2 A, B))GG^*(AF, BF) = \]

(by \((FD^*)\) for \(G\))

\[= \left(\varphi_{(A \otimes B)}(FG) \right) F(G((p_1 A, B) \otimes (p_2 A, B)))GG^*(AF, BF) = \]

(by \((FMT^*)\) for \(G\))

\[= \left(\varphi_{(A \otimes B)}(FG) \right) F(G((p_1 A, B) \otimes (p_2 A, B)))GG^*(AF, BF) = \]

(by \((FMT^*)\) for \(F\))

\[= \left(\varphi_{(A \otimes B)}(FG) \right) F(G((p_1 A, B) \otimes (p_2 A, B)))GG^*(AF, BF) = \]

(by functor property)

\[= (F^*(A, B))GG^*(AF, BF) \]

(by \((DTRL)\) in \(K\)).
The claim about the isomorphism property follows immediately by \((\text{FC}^*)\) and the fact that each functor maps isomorphisms onto isomorphisms.

Because of functor properties and the property \((\text{FT})\) for \(F\) and \(G\), we have

\[
t_A^{(K)}(FG)t_I^{(K)(FG)} = \left(t_A^{(K)} F \right) G t_I^{(K)(F)G} = \left(\left(t_A^{(K)} F \right) G t_I^{(M)} \right) G t_I^{(P)} = \\
= \left(t_A^{(K)} F t_I^{(K)F} \right) G t_I^{(P)} = \left(t_A^{(M)} G \right) t_I^{(P)} = t_I^{(AF)G} = t_I^{(P)}.
\]

Proposition 3.5. Let \(F : K \to M\) and \(G : M \to P\) be functors between dhts-categories \(K, M, P\), such that both fulfill the conditions \((\text{F}^*)\), \((\text{FI}^*)\), and \((\text{FM}^*)\). Then the composition yields a functor \(FG : K \to P\) between the dhts-categories \(K\) and \(P\) fulfilling \((\text{F}^*)\), \((\text{FI}^*)\), and \((\text{FM}^*)\) too. If both are even Hoehnke functors between Hoehnke categories, then \(FG\) is also a Hoehnke functor.

Moreover, if both functors have the property

\[(\text{FZ}) \quad O^{(K)} F = O^{(M)} \land \forall X \in |K| \quad (XF = O^{(M)} \Rightarrow X = O^{(K)}),\]

then the functor \(FG\) has the same property.

Finally, let \(F\) and \(G\) be strongly \(d\)-monoidal functors between dhts-categories. Then \(FG\) is a strongly \(d\)-monoidal functor from \(K\) into \(P\).

Proof. Ad \((\text{F}^*)\):

The assertion is true because of

\[(FG)^* \langle A, B \rangle = d^{(P)}_{(A \otimes B)(FG)} \left(p_1^{A,B}(FG) \otimes p_2^{A,B}(FG) \right) = \\
= d^{(P)}_{((A \otimes B)F)G} \left(\left(p_1^{A,B} \right) G \otimes \left(p_2^{A,B} \right) G \right) = \\
= \left(d^{(M)}_{(A \otimes B)F} G^* \langle (A \otimes B)F, (A \otimes B)F \rangle \left(\left(p_1^{A,B} \right) G \otimes \left(p_2^{A,B} \right) G \right) \right) = \\
= \left(\text{because } G \text{ is a } d\text{-monoidal functor by the assumptions} \right)\]
\[
\begin{align*}
\left(d^{(M)}_{A \otimes B} F G \right) \left(\left(p_1^{A,B} F \right) \otimes \left(p_2^{A,B} F \right) \right) GG^* \langle AF, BF \rangle &= \\
= \left(d^{(M)}_{A \otimes B} \left(\left(p_1^{A,B} F \right) \otimes \left(p_2^{A,B} F \right) \right) \right) GG^* \langle AF, BF \rangle &= \text{(by \(FM^*\) for \(G\))}
\end{align*}
\]

\[
\begin{align*}
= \left(d^{(M)}_{A \otimes B} \left(\left(p_1^{A,B} F \right) \otimes \left(p_2^{A,B} F \right) \right) \right) GG^* \langle AF, BF \rangle &= \text{(since \(F\) and \(G\) fulfil \((F^*)\))}
\end{align*}
\]

\[
= (F^* \langle A, B \rangle)GG^* \langle AF, BF \rangle \in \text{Iso}_P.
\]

Ad \((FI^*)\):

Because of \(t_{t^{(M)}_{I(K)}} = \text{Iso}_M\) and \(t_{t^{(P)}_{I(K)}} = \text{Iso}_P\) one observes

\[
\begin{align*}
t_{t^{(P)}_{I(K)}} \left(\left(\left(t_{t^{(M)}_{I(K)}} \right) \right) Gt_{t^{(P)}_{I(M)}} \right) \in \text{Iso}_P.
\end{align*}
\]

Ad \((FM^*)\):

Let \(\varphi \in K[A, B], \ \psi \in K[C, D]\). Then

\[
\begin{align*}
(\varphi \otimes \psi)(FG)(FG)^* \langle B, D \rangle = \left((\varphi \otimes \psi)F \right) G(F^* \langle B, D \rangle) GG^* \langle BF, DF \rangle &= \text{(by \((FC^*)\))}
\end{align*}
\]

\[
\begin{align*}
= \left((\varphi \otimes \psi)F F^* \langle B, D \rangle \right) GG^* \langle BF, DF \rangle &= \text{(by \((FM^*)\) for \(F\))}
\end{align*}
\]

\[
\begin{align*}
= \left(F^* \langle A, C \rangle \left(\varphi F \otimes (\psi F) \right) \right) GG^* \langle BF, DF \rangle &= \text{(by \((FM^*)\) for \(G\))}
\end{align*}
\]

\[
\begin{align*}
= \left(F^* \langle A, C \rangle \right) G \left((\varphi F) \otimes (\psi F) \right) GG^* \langle AF, CF \rangle &= \text{(by \((FM^*)\) for \(G\))}
\end{align*}
\]

\[
\begin{align*}
= \left(F^* \langle A, C \rangle \right) GG^* \langle AF, CF \rangle \left((\varphi F) G \otimes (\psi F) G \right) &= \text{(by \((FC^*)\))}
\end{align*}
\]

\[
= \left(FG \right)^* \langle A, C \rangle \left((\varphi (FG) \otimes (\psi (FG)) \right).
\]

Now let \(F \neq U\) and \(G \neq U\) be even \(O\)-preserving functors between Hoehnke categories. Then the functor \(FG\) is an \(O\)-preserving functor between Hoehnke categories since
\[O^{(K)}(FG) = (O^{(K)}F)G = O^{(M)}G = O^{(P)}. \]

Moreover, if \(F \) and \(G \) both fulfil the condition (FZ), then
\[O^{(P)} = A(FG) = (AF)G \Rightarrow AF = O^{(M)} \Rightarrow A = O^{(K)} \]
shows that \((FG) \) has the property (FZ) too.

If one of the functors \(F \) or \(G \) is the functor \(U \), then obviously \(FG = U \).

The functor \(FG \) satisfies the conditions (sFM), (sFT), and (sFD), since \(F \) and \(G \) have these properties.

Ad (sFM):
\[(\varphi \otimes \psi)(FG) = ((\varphi \otimes \psi)F)G = (\varphi F \otimes \psi F)G = (\varphi F)G \otimes (\psi F)G = \varphi(FG) \otimes \psi(FG). \]

Ad (sFT):
\[t^{(K)}(FG) = \left(t^{(K)}_A F \right) G = t^{(M)}_{AF} G = t^{(P)}_{(AF)G} = t^{(P)}_{A(FG)}, \]

Ad (sFD):
\[d^{(K)}(FG) = \left(d^{(K)}_A F \right) G = d^{(M)}_{AF} G = d^{(P)}_{(AF)G} = d^{(P)}_{A(FG)}. \]

Therefore, \(FG \) is a strongly \(d \)-monoidal functor.

4. The cartesian product of monoidal functors

Furthermore, it will be of interest to investigate the "cartesian product" of functors between symmetric monoidal categories. In such a way one constructs functor categories with a symmetric monoidal structure.

Lemma 4.1. Let \((F, \tilde{F}, i_F) : K^\bullet \to M^\bullet \) and \((G, \tilde{G}, i_G) : P^\bullet \to Q^\bullet \) be monoidal functors (strongly monoidal functors) between the symmetric monoidal categories \(K^\bullet \) and \(M^\bullet \), \(P^\bullet \) and \(Q^\bullet \), respectively.
Then \((F \times G, \tilde{F} \times \tilde{G}, i_{F \times G}) : (K \times P)\bullet \to (M \times Q)\bullet\) is a monoidal functor (strongly monoidal functor) defined by
\[
(A, X)(F \times G) := (AF, XG), \quad (\varphi, \psi)(F \times G) := (\varphi F, \psi G),
\]
\[
\tilde{F} \times \tilde{G}((A, X), (B, Y)) := \left(\tilde{F}((A, B)), \tilde{G}((X, Y))\right),
\]
\[
i_{F \times G} := (i_F, i_G).
\]
Moreover, if the considered categories are \(d\)-categories and \(F\) and \(G\) are \(d\)-monoidal functors (strongly \(d\)-monoidal functors), then \(F \times G\) is a \(d\)-monoidal functor (strongly \(d\)-monoidal functor) too.

Finally, if the considered categories are even Hoehnke categories and \(F\) as well as \(G\) fulfil the condition (FO) or (FZ), then \(F \times G\) satisfies the same condition.

Proof. All conditions for the fact that \((F \times G, \tilde{F} \times \tilde{G}, i_{F \times G})\) is a monoidal functor follow from the relevant properties of the monoidal functors \((F, \tilde{F}, i_F)\) and \((G, \tilde{G}, i_G)\) via the definition above as well as the composition and \(\otimes\)-operation are defined componentwise. Altogether, one has to show the usual functor conditions and the validity of \((F\sim), (F1), (FA), (FR), (FS),\) and \((FM)\) for \(F \times G\).

The functor properties are easy to verify, for instance:
\[
((\varphi_1, \psi_1) \cdot (\varphi_2, \psi_2))(F \times G) = (\varphi_1 \cdot \varphi_2, \psi_1 \cdot \psi_2)(F \times G) =
\]
\[
= ((\varphi_1 \cdot \varphi_2)F, (\psi_1 \cdot \psi_2)G) =
\]
\[
= ((\varphi_1 F) \cdot (\varphi_2 F), (\psi_1 G) \cdot (\psi_2 G)) =
\]
\[
= ((\varphi_1 F), (\psi_1 G)) \cdot ((\varphi_2 F), (\psi_2 G)) =
\]
\[
= (\varphi_1, \psi_1)(F \times G) \cdot (\varphi_2, \psi_2)(F \times G).
\]

Ad \((F\sim)\):
The isomorphisms of \(M \times Q\) are pairs of isomorphisms of \(M\) and \(Q\), respectively, hence \(\tilde{F} \times \tilde{G}((A, X), (B, Y))\) is an isomorphism in all cases.
Ad (FI):
\(i_{F \times G}\) is an isomorphism since \(i_F\) and \(i_G\) are isomorphisms.

Ad (FA), (FR), (FS), and (FM):
By definition, all wished properties of \(F \times G\) are immediate consequences of the relevant properties of \(F\) and \(G\), for instance:

\[
(F \times G)((A_1, X_1), (A_2, X_2))((\varphi_1, \psi_1) \otimes (\varphi_2, \psi_2))(F \times G) =
\]

\[
= \left(\tilde{F}(A_1, A_2), \tilde{G}(X_1, X_2)\right) ((\varphi_1 \otimes \varphi_2)F, (\psi_1 \otimes \psi_2)G) =
\]

\[
= \left(\tilde{F}(A_1, A_2)(\varphi_1 \otimes \varphi_2)F, \tilde{G}(X_1, X_2)(\psi_1 \otimes \psi_2)G\right) =
\]

\[
= \left((\varphi_1 F \otimes \varphi_2 F)\tilde{F}(B_1, B_2), (\psi_1 G \otimes \psi_2 G)\tilde{G}(Y_1, Y_2)\right) =
\]

\[
= \left(((\varphi_1 F, \psi_1 G) \otimes (\varphi_2 F, \psi_2 G))\left(\tilde{F}(B_1, B_2), \tilde{G}(Y_1, Y_2)\right) =
\]

\[
= \left(((\varphi_1, \psi_1)(F \times G) \otimes (\varphi_2, \psi_2)(F \times G))(F \times G)((B_1, Y_1), (B_2, Y_2))\right).
\]

Now let \(K, M, P, Q\) be ds-categories. Then one has in addition:

\[
d^{(K \times P)}_{(A, X)}(F \times G) = \left(d^{(K)}_A, d^{(P)}_X\right) (F \times G) =
\]

\[
= \left(d^{(K)}_A F, d^{(P)}_X G\right) = \left(d^{(M)}_{AF} \tilde{F}(A, A), d^{(Q)}_{XC} \tilde{G}(X, X)\right) =
\]

\[
= \left(d^{(M)}_{AF}, d^{(Q)}_{XC}\right) \left(\tilde{F}(A, A), \tilde{G}(X, X)\right) =
\]

\[
d^{(M \times Q)}_{(AF, XG)}(F \times G)((A, X), (A, X)),
\]
i.e. \(F \times G \) is a \(d \)-monoidal functor.

Ad (FO) and (FZ):

\[
O^{(M \times Q)} = (O^{(M)}, O^{(Q)}) = (AF, XG) = (A, X)(F \times G)
\]

\[
\iff O^{(M)} = AF \land O^{(Q)} = XG \iff O^{(K)} = A \land O^{(P)} = X
\]

\[
\iff (A, B) = (O^{(K)}, O^{(P)}) = O^{(K \times P)}.
\]

If \(F \) and \(G \) both are strongly \(d \)-monoidal functors, then the functor \(F \times G \) satisfies the conditions (sFM), (sFT), (sFD), since \(F \) and \(G \) both have this properties, e.g.

\[
((\varphi_1, \psi_1) \otimes (\varphi_2, \psi_2))(F \times G) = (\varphi_1 \otimes \varphi_2, \psi_1 \otimes \psi_2)(F \times G)
\]

\[
= ((\varphi_1 \otimes \varphi_2)F, (\psi_1 \otimes \psi_2)G) = ((\varphi_1 F \otimes \varphi_2 F), (\psi_1 G \otimes \psi_2 G))
\]

\[
= (\varphi_1 F, \psi_1 G) \otimes (\varphi_2 F, \psi_2 G) = (\varphi_1, \psi_1)(F \times G) \otimes (\varphi_2, \psi_2)(F \times G).
\]

\[\blacksquare\]

Lemma 4.2. Let \(K, \; M, \; P \) be arbitrary symmetric monoidal categories. Then one receives the strongly \(d \)-monoidal functors

\[
A_{K, M, P} : K \times (M \times P) \to (K \times M) \times P,
\]

\[
((A, (B, C)) \mapsto ((A, B), C), \; (\varphi, (\psi, \rho)) \mapsto ((\varphi, \psi), \rho))
\]

\[\text{(associativity functor);}\]

\[
R_K : K \times \Omega \to K, \; ((A, I) \mapsto A, \; (\varphi, 1_I) \mapsto \varphi)
\]

\[\text{(right-identity functor);}\]

\[
L_K : \Omega \times K \to K, \; ((I, A) \mapsto A, \; (1_I, \varphi) \mapsto \varphi)
\]
Categories of functors between categories with ...

(left-identity functor):

\[S_{K,M} : K \times M \to M \times K, \quad ((A,B) \mapsto (B,A), (\varphi, \psi) \mapsto (\psi, \varphi)) \]

(symmetry functor):

\[D_K : K \to K \times K, \quad (A \mapsto (A,A), \varphi \mapsto (\varphi, \varphi)) \]

(diagonality functor):

\[\Theta_K : K \to \Omega, \quad (A \mapsto I, \varphi \mapsto 1_I) \]

(terminality functor).

If \(K, M, P \) are even Hoehnke categories, then the functors \(A_{K,M,P}, R_K, L_K, S_{K,M}, D_K \) are strong Hoehnke functors.

Proof. At first one has to prove the functor conditions for all the mappings defined above. Some selected examples shall demonstrate the argumentations.

\(A_{K,M,P} \) preserves the domains:

\[
\text{dom}^{(K \times M) \times P}((\varphi, (\psi, \rho))A_{K,M,P}) = \text{dom}^{(K \times M) \times P}((\varphi, \psi), \rho)) = \\
= ((\text{dom}^K(\varphi), \text{dom}^M(\psi)), \text{dom}^P(\rho)) = \\
= ((\text{dom}^K(\varphi), (\text{dom}^M(\psi), \text{dom}^P(\rho))A_{K,M,P} = \\
= (\text{dom}^{(K \times (M \times P))}((\varphi, (\psi, \rho)))A_{K,M,P}.
\]

\(R_K \) preserves the codomains:

\[
\text{cod}^K((\varphi, 1_I)R_K) = \text{cod}^K(\varphi) = \\
= (\text{cod}^K(\varphi), \text{cod}^\Omega(1_I))R_K = (\text{cod}^{(K \times \Omega)}(\varphi, 1_I))R_K.
\]
$S_{K,M}$ preserves the units:

$$\left(1_{(A,B)}^{(K,M)}\right) S_{K,M} = \left(1_A^{(K)}, 1_B^{(M)}\right) S_{K,M} = \left(1_B^{(M)}, 1_A^{(K)}\right) = 1_{(B,A)}^{(M \times K)} = 1_{(A,B)}^{(M \times K)} S_{K,M}.$$

D_K is compatible with the composition:

$$(\varphi_1 \varphi_2) D_K = (\varphi_1 \varphi_2, \varphi_1 \varphi_2) = (\varphi_1, \varphi_1)(\varphi_2, \varphi_2) = (\varphi_1 D_K)(\varphi_2 D_K).$$

The proof of the missing facts concerning the functor properties is left to the reader.

In a next step one has to verify the properties (sFI), (sFA), (sFR), (sFS), (sFM), and (sFD) for the functors introduced above. Several examples shall demonstrate the proofs.

$A_{K,M,P}$ satisfies (sFI), since

$$I^{(K \times (M \times P))} A_{K,M,P} = (I^{(K)}, (I^{(M)}, I^{(P)})) A_{K,M,P} =$$

$$= ((I^{(K)}, I^{(M)}), I^{(P)}) = I^{((K \times M) \times P)}.$$

R_K fulfills (sFA) as follows:

$$a_{(A,I),(B,I),(C,I)}^{(K \times \Omega)} R_K = \left(a_{A,B,C,I,I,I}^{(K)}, a_{A,B,C,I}^{(\Omega)}\right) R_K =$$

$$= \left(a_{A,B,C,I}^{(K)}, a_{A,B,C,I}^{(\Omega)}\right) R_K = a_{A,B,C,I}^{(K)} R_K = a_{A,I}^{(K)} R_K (B,I) R_K = a_{C,I}^{(K)} R_K.$$

(sFS) for $S_{K,M}$:

$$s_{(A,X),(B,Y)}^{(K \times M)} S_{K,M} = \left(s_{(A,B)}^{(K)}, s_{(X,Y)}^{(M)}\right) S_{K,M} =$$

$$= \left(s_{(X,Y)}^{(M)}, s_{(A,B)}^{(K)}\right) S_{K,M} = s_{(X,A),(Y,B)}^{(M \otimes K)} S_{K,M} = s_{(A,X),(B,Y)}^{(M \otimes K)} S_{K,M}.$$
(sFM) for D_K:

$$(\varphi_1 \otimes \varphi_2)D_K = (\varphi_1 \otimes \varphi_2, \varphi_1 \otimes \varphi_2) = (\varphi_1, \varphi_1 \otimes (\varphi_2, \varphi_2) = (\varphi_1 D_K \otimes (\varphi_2 D_K).

(sFD) for L_K:

$$d^\Omega \times (I, A) L_K = \left(d^\Omega I, d^\Omega A \right) L_K = d^\Omega (I, A).$$

(sFT) for $A_{K,M,P}$:

$$t^{(M \times (K \times P))} (A, B, C) A_{K,M,P} = \left(t^M A, t^M B, t^P C \right) = t^{((K \times M) \times P)} ((A, B, C)) A_{K,M,P}.$$

Obviously, all mentioned functors excluding Θ_K fulfil the condition (FZ) by definition.

The corresponding morphisms to the d-monoidal functors above are the following:

$$\tilde{A}_{K,M,P}((A_1, (B_1, C_1)), (A_2, B_2), C_2)) := 1^{((K \times M) \times P)} ((A_1 \otimes A_2, B_1 \otimes B_2), C_1 \otimes C_2) =$$

$$= \left(1^K A_1 \otimes A_2, 1^M B_1 \otimes B_2, 1^P C_1 \otimes C_2 \right)$$

and $$i_{A_{K,M,P}} := 1^P (I, (K \times M) \times P) = \left(1^K I, 1^M I, 1^P I \right).$$

$$\tilde{R}_K((A_1, I), (A_2, I)) := 1^{(K)} A_1 \otimes A_2 \quad \text{and} \quad i_{R_K} := 1^{(K)} I;$$

$$\tilde{L}_K((I, A_1), (I, A_2)) := 1^{(K)} A_1 \otimes A_2 \quad \text{and} \quad i_{L_K} := 1^{(K)} I;$$
\[\tilde{S}_{K,M}(\langle A_1, B_1 \rangle, (A_2, B_2)) := 1_{(K \times M)}^{(K \times M)} (B_1 \otimes B_2, A_1 \otimes A_2) = \left(1_{(M \times K)}^{(M \times K)} B_1, 1_{(M \times K)}^{(M \times K)} A_1 \otimes A_2 \right) \]

and
\[i_{S_{K,M}} := 1_{(M \times K)}^{(M \times K)} \left(1_{(M \times K)}^{(M \times K)} B_1, 1_{(M \times K)}^{(M \times K)} A_1 \otimes A_2 \right) \]

\[\tilde{D}_K(\langle A_1, A_2 \rangle) := 1_{(K \times K)}^{(K \times K)} (A_1 \otimes A_2, A_1 \otimes A_2) = \left(1_{(K \times K)}^{(K \times K)} A_1 \otimes A_2, 1_{(K \times K)}^{(K \times K)} A_1 \otimes A_2 \right) \]

and
\[i_{D_K} := 1_{(K \times K)}^{(K \times K)} \left(1_{(K \times K)}^{(K \times K)} A_1 \otimes A_2, 1_{(K \times K)}^{(K \times K)} A_1 \otimes A_2 \right) \]

\[\tilde{\Theta}_K(\langle A, B \rangle) := 1_I \quad \text{and} \quad i_{\Theta_K} := 1_I. \]

The different classes of distinguished functors will be denoted by \(A \) (associativity functors), \(R \) (right-identity functors), \(L \) (left-identity functors), \(S \) (symmetry functors), \(D \) (diagonality functors), and \(\Theta \) (terminal functors), respectively.

The categories considered in Corollary 3.3 have the following structure concerning the cartesian product:

Theorem 4.3. All small symmetric monoidal categories as objects and all monoidal functors between them form a dts-category

\[\text{MON} = (\text{MON}; \times, \Omega, A, R, L, S, D, \Theta). \]

There are the dts-subcategories of \(\text{MON} \):

The dts-category of all d-monoidal functors between ds-categories

\[d\text{MON} = (d\text{MON}; \times, \Omega, A, R, L, S, D, \Theta), \]

the dts-category of all d-monoidal functors between dhts-categories

\[dht\text{MON} = (dht\text{MON}; \times, \Omega, A, R, L, S, D, \Theta), \]

the dts-category of all d-monoidal functors between dh∇s-categories

\[dh\nabla\text{MON} = (dh\nabla\text{MON}; \times, \Omega, A, R, L, S, D, \Theta), \]
$\textit{dh}\text{-}\textit{MON} = (\textit{dh}\text{-}\textit{MON}; \times, \Omega, \mathcal{A}, \mathcal{R}, \mathcal{L}, \mathcal{D}, \Theta),$

de\text{-}the\ dts\text{-}category\ of\ all\ d\text{-}monoidal\ functors\ between\ dts\text{-}categories

$\textit{dt}\text{-}\textit{MON} = (\textit{dt}\text{-}\textit{MON}; \times, \Omega, \mathcal{A}, \mathcal{R}, \mathcal{L}, \mathcal{D}, \Theta),$

the\ dts\text{-}category\ of\ all\ d\text{-}monoidal\ functors\ between\ dth\text{-}\textit{s}\text{\text{-}categories}

$\textit{dth\text{-}\textit{MON}} = (\textit{dhth\text{-}\textit{MON}}; \times, \Omega, \mathcal{A}, \mathcal{R}, \mathcal{L}, \mathcal{D}, \Theta),$

the\ dts\text{-}category\ of\ all\ d\text{-}monoidal\ functors\ between\ d\text{\textit{\textit{s}}}\text{-}categories

$\textit{d\text{-}\textit{MON}} = (\textit{d\text{-}\textit{MON}}; \times, \Omega, \mathcal{A}, \mathcal{R}, \mathcal{L}, \mathcal{D}, \Theta).$

Proof. Since small categories and functors between them form functor categories, it remains to prove that the composition of monoidal functors (d-monoidal functors) yields a monoidal functor (d-monoidal functor). That was done in 3.1. Because of Lemma 4.1, $F \times G$ is a monoidal functor (d-monoidal functor), whenever F and G are monoidal (d-monoidal).

As already mentioned, Ω is a $dth\text{-}\textit{s}\text{-category}$. The mapping "\times" for objects and morphisms ($dhts\text{-categories}$ and d-monoidal functors, respectively) defines a bifunctor from ($\textit{MON} \times \textit{MON}$) into \textit{MON} since

$\text{dom}(F \times G) = \text{dom}F \times \text{dom}G,$

$\text{cod}(F \times G) = \text{cod}F \times \text{cod}G,$

$1(F \times G) = 1(F) \times 1(G),$

$(F_1 \times G_1)(F_2 \times G_2) = F_1F_2 \times G_1G_2$

by the definition above.
The families of the functors $A_{K,M,P}$, R_K, L_K, $S_{K,M}$ are obviously families of functor isomorphisms and the properties for a symmetric monoidal category are easy to verify by the following considerations. Note that two mappings are equal, if their images coincide for all arguments, and it is sufficient to consider morphisms only in the computation.

Ad (M1):

$$(\varphi, (\psi, (\rho, \sigma)))_{A_{K,M,P} \times Q} A_{K\times M,P,Q} =$$

$$= (((\varphi, \psi), (\rho, \sigma))_{A_{K\times M,P,Q}} = (((\varphi, \psi), \rho), \sigma) =$$

$$= ((\varphi, (\psi, \rho)), \sigma)_{A_{K,M,P} \times 1(Q)} =$$

$$= (\varphi, ((\psi, \rho)), \sigma)_{A_{K,M,P,Q}(A_{K,M,P} \times 1(Q))} =$$

$$= (\varphi, (\psi, (\rho, \sigma)))_{1(K) \times A_{M,P,Q}} A_{K,M\times P,Q}(A_{K,M,P} \times 1(Q)),$$

hence

$$\forall K^\bullet, M^\bullet, P^\bullet, Q^\bullet \in |\text{MON}|$$

$$(A_{K,M,P} \times Q)_{A_{K\times M,P,Q}} = (1(K) \times A_{M,P,Q}) A_{K,M\times P,Q}(A_{K,M,P} \times 1(Q)),$$

Ad (M2):

$$(\varphi, (1_I, \psi))_{A_{K,\Omega,M}} (R_K \times 1(M)) = ((\varphi, 1_I), \psi)(R_K \times 1(M)) = (\varphi, \psi) =$$

$$= (\varphi, (1_I, \psi))(1(K) \times L_K),$$

hence

$$\forall K^\bullet, M^\bullet \in |\text{MON}|$$

$$(A_{K,\Omega,M}(R_K \times 1(M)) = (1(K) \times L_K)),$$
Categories of functors between categories with ... 79

Ad (M3):

\((\varphi, (\psi, \rho))_{K,M,P} A_{K \times M, P} A_{P,K,M} = ((\varphi, \psi), \rho)_{S_K \times M, P} A_{P,K,M} = (\rho, (\varphi, \psi))_{A_{P,K,M}} = ((\rho, \varphi), \psi) = ((\varphi, \rho), \psi)(S_{K,P} \times 1(M)) = (\varphi, (\rho, \psi))_{A_{K,P,M}}(S_{K,P} \times 1(M)) = (\varphi, (\psi, \rho))(1\langle K \rangle \times S_{M,P})A_{K,P,M}(S_{K,P} \times 1(M)), \) hence

\(\forall K^*, M^*, P^* \in |\text{MON}| \)

\((A_{K,M,P} S_{K \times M, P} A_{P,K,M} = (1\langle K \rangle \times S_{M,P})A_{K,P,M}(S_{K,P} \times 1(M))), \)

Ad (M4):

\((\varphi, \psi)_{S_{K,M}} S_{M,K} = (\psi, \varphi)_{S_{M,K}} = (\varphi, \psi)_{1\langle K \times M \rangle} = (\varphi, \psi)_{1\langle K \times M \rangle}, \) hence

\(\forall K^*, M^* \in |\text{MON}| \) \((S_{K,M} S_{M,K} = 1\langle K \times M \rangle), \)

Ad (M5):

\((\varphi, 1_I)_{S_{K,\Omega}} L_{K} = (1_I, \varphi)_{L_{K}} = \varphi = (\varphi, 1_I)_{R_{K}}), \) hence

\(\forall K^* \in |\text{MON}| \) \((S_{K,\Omega} L_{K} = R_{K}), \)

Ad (M6):

\((\varphi, (\psi, \rho))_{A_{K,M_1, P_1}} ((F \times G) \times H) = ((\varphi, \psi, \rho))((F \times G) \times H) = ((\varphi F, \psi G) \times H) = \)
\[(\varphi F, (\psi G, \rho H))A_{K_2, M_2, P_2} = (\varphi, (\psi, \rho))(F \times (G \times H))A_{K_2, M_2, P_2},\]

hence
\[\forall K^\bullet_1, M^\bullet_1, P^\bullet_1, K^\bullet_2, M^\bullet_2, P^\bullet_2 \in [\text{MON}]\]

\[\forall F \in (\text{MON})[K^\bullet_1, K^\bullet_2] \forall G \in (\text{MON})[M^\bullet_1, M^\bullet_2] \forall H \in (\text{MON})[P^\bullet_1, P^\bullet_2]\]

\[(A_{K_1, M_1, P_1}((F \times G) \times H) = (F \times (G \times H))A_{K_2, M_2, P_2}),\]

Ad (M7):
\[(\varphi, 1_I)R_{K_1}F = \varphi F = (\varphi F, 1_I)R_{K_2} = (\varphi, 1_I)(F \times 1(\Omega))R_{K_2},\]

hence
\[\forall K^\bullet_1, K^\bullet_2 \in [\text{MON}] \forall F \in (\text{MON})[K^\bullet_1, K^\bullet_2] \forall G \in (\text{MON})[M^\bullet_1, M^\bullet_2]\]

\[(R_{K_1}F = (F \times 1(\Omega))R_{K_2}),\]

Ad (M8):
\[(\varphi, \psi)S_{K_1, M_1}(G \times F) = (\psi G, \varphi F) = (\varphi F, \psi G)S_{K_2, M_2} = (\varphi, \psi)(F \times G)S_{K_2, M_2},\]

hence
\[\forall K^\bullet_1, K^\bullet_2, M^\bullet_1, M^\bullet_2 \in [\text{MON}] \forall F \in (\text{MON})[K^\bullet_1, K^\bullet_2] \forall G \in (\text{MON})[M^\bullet_1, M^\bullet_2]\]

\[(S_{K_1, M_1}(G \times F) = (F \times G)S_{K_2, M_2}).\]

\[(D_K | K^\bullet \in [\text{MON}]) \text{ is a } [\text{MON}]-\text{indexed family of monoidal functors fulfilling the necessary conditions, namely:}\]

Ad (D1):
\[\varphi D_{K_1}(F \times F) = (\varphi F, \varphi F) = \varphi F D_{K_2},\]

hence
\[\forall K^\bullet_1, K^\bullet_2 \in [\text{MON}] \forall F \in (\text{MON})[K^\bullet_1, K^\bullet_2] \forall G \in (\text{MON})[M^\bullet_1, M^\bullet_2] \forall H \in (\text{MON})[P^\bullet_1, P^\bullet_2]\]

\[(D_{K_1}(F \times F) = F D_{K_2}).\]
Ad (D2):
\[\varphi_{D_K}(D_K \times 1(K)) = ((\varphi, \varphi), \varphi) = (\varphi, (\varphi, \varphi))A_{K,K,K} = \varphi_{D_K}(1(K) \times D_K)A_{K,K,K}, \]
hence
\[\forall K^\bullet \in |\text{MON}| \quad (D_K(D_K \times 1(K))) = D_K(1(K) \times D_K)A_{K,K,K}, \]

Ad (D3):
\[\varphi_{D_K}S_{K,K} = (\varphi, \varphi)S_{K,K} = (\varphi, \varphi) = \varphi_{D_K}, \]
hence
\[\forall K^\bullet \in |\text{MON}| \quad (D_KS_{K,K} = D_K), \]

Ad (D4):
\[((\varphi, \psi)(D_K \times D_M)B_{K,K,M,M} = ((\varphi, \varphi), (\psi, \psi))B_{K,K,M,M} = ((\varphi, \psi), (\varphi, \psi)) = (\varphi, \psi)D_{K,M}K, \]
where
\[B_{K,M,P,Q} = A_{K,M,P,Q}(A^{-1}_{K,M,P}(1(K) \times S_{M,P}A_{K,P,M} \times 1(Q)))A^{-1}_{K,M,P,Q}, \]
hence
\[\forall K^\bullet, M^\bullet \in |\text{MON}| \quad ((D_K \times D_M)B_{K,K,M,M} = D_{K,M}). \]

Finally, \((\Theta_K \mid K^\bullet \in |\text{MON}|)\) is a family of monoidal functors which is indexed by the class of all symmetric monoidal categories and, because of
\[\varphi(F\Theta_{K_2})) = (\varphi F)\Theta_{K_2} = 1_I = \varphi\Theta_{K_1}, \]
\[\Rightarrow \forall K^\bullet_1, K^\bullet_2 \in |\text{MON}| \quad \forall F : K_1 \to K_2 \quad (F\Theta_{K_2} = \Theta_{K_1}), \]
\[\varphi(D_K(1(K) \times \Theta_K)R_K) = (\varphi, 1_I)R_K = \varphi = \varphi 1(K) \]

\[\Rightarrow \forall K^* \in [\text{MON}] \ (D_K(1(K) \times \Theta_K)R_K) = 1(K)), \]

\[\varphi(D_K(\Theta_K \times 1(K))L_K) = (1_I, \varphi)L_K = \varphi = \varphi 1(K) \]

\[\Rightarrow \forall K^* \in [\text{MON}] \ (D_K(\Theta_K \times 1(K))L_K) = 1(K)), \]

\[
(\varphi, \psi)(D_{K \times M}((1(K) \times \Theta_M)R_K \times (\Theta_K \times 1(M))L_M = (1(\varphi, 1_I)R_K, (1_I, \psi)L_M) = (\varphi, \psi)1(K \times M)
\Rightarrow \forall K^*, M^* \in [\text{MON}] | (D_{K \times M}((1(K) \times \Theta_M)R_K \times (\Theta_K \times 1(M))L_M) =
\]

\[= 1(K \times M)), \]

the conditions (T1), (DTR), (DTL), (DTRL) are satisfied.

Corollary 4.4. All strongly monoidal functors between symmetric monoidal categories establish a dts-subcategory \(s\text{MON} \) of \(\text{MON} \). All strongly \(d \)-monoidal functors between small \(ds \)-categories (small \(dh\text{hts} \)-categories, small \(dh\text{hts} \)-categories, small \(d\text{hts} \)-categories, small \(dh\text{hts} \)-(\text{hts})-categories, small \(dh\text{hts} \)-(\text{hts})-categories) establish a dts-subcategory \(sd\text{MON} \) of \(s\text{MON} \).

The mutual inclusions of the considered dts-categories are illustrated in the diagram in Figure 3, where \(M \) shortly stands for \(\text{MON} \).

Hoehnke proved in [8] (Theorem 6.1) that all "\(dht \)-symmetric categories (as objects) and the \(dht \)-symmetric functors between them (as morphisms) form an illegitime category, denoted by \(dht\text{-Sym} \)."

The statements presented in the theorem above are connected with the result of Hoehnke, but there are differences in the following aspects:
1. Each O-preserving nontrivial d-monoidal functor between $dhts$-categories is a dht-symmetric functor in the sense of Hoehnke, but not conversely, since a dht-symmetric functor need not have the property (FM).

2. All the considered categories possess an additional structure which is not mentioned in the paper by Hoehnke.

3. The objects of the categories in this volume are small monoidal categories such that there are not necessary distinguished zero objects, whereas the objects of $dht-Sym$ are Hoehnke categories only.

4. The distinguished $dhth\n\s$-category Ω is not a Hoehnke category and the d-monoidal functor E does not preserve the zero object O.

Figure 3.
Specific \(dhts\)-categories are of particular interest, namely \(dhts\)-theories, defined as follows.

A \(dhts\)-category \(\mathcal{T}\) is called \(J\)-sorted \(dhts\)-theory, iff there exists a set \(J \in |\mathcal{T}|\) such that \(I \notin J\) and \((|\mathcal{T}|; \otimes, I)\) is a free algebra of type \((2, 0)\) freely generated by \(J\).

By this definition, \(\mathcal{T}\) is a small category since \(|\mathcal{T}|\) is a set. The algebra \((|\mathcal{T}|; \otimes, I)\) contains a subalgebra \(< I >\) of the same type consisting of all possible \(\otimes\)-products of \(I\) with itself in arbitrary brackets. \(J\)-sorted \(dts\)-theories and \(J\)-sorted \(dhth\n\sigma\)-theories will be defined in the same manner.

A Hoehnke category (di-Hoehnke category) \(\mathcal{T}\) is called \(J\)-sorted Hoehnke theory (\(J\)-sorted di-Hoehnke theory), iff there is a set \(J \in |\mathcal{T}|\) such that \(J \cap \{O, I\} = \emptyset\) and \((|\mathcal{T}|; \otimes I, O)\) is the free algebra of type \((2, 0, 0)\) freely generated by \(J\) in the variety of type \((2, 0, 0)\) defined by the identity \(X \otimes O = O = O \otimes X\).

It is well-known that each class of objects of a given category determines together with all possible morphisms between them a subcategory and the defined \(J\)-sorted theories are objects of the related functor categories.

Unfortunately, the cartesian product of a \(J_1\)-sorted theory \(\mathcal{T}_1\) and a \(J_2\)-sorted theory \(\mathcal{T}_2\) is not necessary a \((J_1 \times J_2)\)-sorted theory, because of

\[A_1, A_2 \in J_1 \land B \in J_2 \Rightarrow |\mathcal{T}_1| \times |\mathcal{T}_2| \ni (A_1 \otimes A_2, B) \notin < J_1 \times J_2 >,\]

that means, that objects of the form \((A_1 \otimes A_2, B)\) are not generated by elements of \(J_1 \times J_2\). Therefore, the \(J\)-sorted theories do not form symmetric monoidal subcategories of the suitable symmetric monoidal functor categories.

Corollary 4.5. All \(dhts\)-theories (\(dts\)-theories, \(dhth\n\sigma\)-theories, Hoehnke theories, di-Hoehnke theories) together with all \(d\)-monoidal functors (Hoehnke functors) between them in a natural manner form a subcategory \(dht\text{Th}\) of \(dht\text{Mon}\) (\(d\text{Th}\) of \(d\text{Mon}\), \(dhth\n\sigma\text{Th}\) of \(dhth\n\sigma\text{Mon}\), \(Hoeh\text{Th}\) of \(Hoeh\text{Mon}\), di-Hoeh\text{Th} of di-Hoeh\text{Mon}\)).

The mutual inclusions of the subcategories mentioned above are presented in Figure 4.
Figure 4.

REFERENCES

Categories of functors between categories with ... 87

Received 7 April 2005
Revised 24 June 2005