ON DOMINATION IN GRAPHS

FRANK GÖRING

Department of Mathematics
Chemnitz University of Technology
D–09107 Chemnitz, Germany

e-mail: frank.goering@mathematik.tu-chemnitz.de

AND

JOCHEN HARANT

Department of Mathematics
Technical University of Ilmenau
D–98684 Ilmenau, Germany

e-mail: harant@mathematik.tu-ilmenau.de

Abstract

For a finite undirected graph G on n vertices two continuous optimization problems taken over the n-dimensional cube are presented and it is proved that their optimum values equal the domination number γ of G. An efficient approximation method is developed and known upper bounds on γ are slightly improved.

Keywords: graph, domination.

2000 Mathematics Subject Classification: 05C69.

1. Introduction and Results

For terminology and notation not defined here we refer to [3]. Let $V = V(G) = \{1, \ldots, n\}$ be the vertex set of an undirected graph G, and for $i \in V$, $N(i)$ be the neighbourhood of i in G, $N_2(i) = \{k \in V \mid k \in \bigcup_{j \in N(i)} N(j) \setminus \{i\} \cup N(i)\}$, $d_i = |N(i)|$, $t_i = |N_2(i)|$, $\delta = \min_{i \in V} d_i$, and $\Delta = \max_{i \in V} d_i$.

A set $D \subseteq V(G)$ is a dominating set of G if $(\{i\} \cup N(i)) \cap D \neq \emptyset$ for every $i \in V$. The minimum cardinality of a dominating set of G is the domination number $\gamma = \min \{|D| \mid D \text{ is a dominating set of } G\}$. A dominating set D is minimal if D is a dominating set of G and there is no dominating set of G with cardinality smaller than $|D|$. A set D is a maximal dominating set if D is a dominating set of G and there is no dominating set of G with cardinality larger than $|D|$.
number γ of G. In [7] $\gamma = \min_{x_1, \ldots, x_n \in [0,1]} \sum_{i \in V} (x_i + (1-x_i) \prod_{j \in N(i)} (1-x_j))$ was proved. With $x_1 = \ldots = x_n = x$ we have $\gamma \leq (x + (1-x)^{\delta+1})n \leq (x + e^{-\delta x})n$ for every $x \in [0,1]$. Minimizing $x + (1-x)^{\delta+1}$ and $x + e^{-\delta x}$, the well-known inequalities $\gamma \leq (1 - \frac{1}{(\delta+1)^2} + \frac{1}{(\delta+1)^{\frac{3}{2}}})n \leq \frac{1+\ln(\delta+1)}{\delta+1}n$ (see [4, 8]) follow. Obviously, it is easily checked whether $\gamma = 1$ or not. Thus, we will assume $G \in \Gamma$ in the sequel, where Γ is the set of graphs G such that each component of G has domination number greater than 1. Without mentioning in each case, we will use $d_i, t_i \geq 1$ for $i = 1, \ldots, n$ if $G \in \Gamma$. For $x_1, \ldots, x_n \in [0,1]$ let

$$f_G(x_1, \ldots, x_n) = \sum_{i \in V} \left(x_i \left(1 - \prod_{j \in N(i)} x_j \right) \left(1 - \prod_{k \in N_2(i)} x_k \right) \right) + (1-x_i) \prod_{j \in N(i)} (1-x_j)$$

$$g_G(x_1, \ldots, x_n) = f_G(x_1, \ldots, x_n) - \sum_{i \in V} \left(\frac{1}{1 + d_i} (1-x_i) \left(\prod_{j \in N(i)} (1-x_j) \right) \left(\prod_{k \in N_2(i)} (1-x_k) \right) \right).$$

Theorem 1. If $G \in \Gamma$ then

$$\gamma = \min_{x_1, \ldots, x_n \in [0,1]} f_G(x_1, \ldots, x_n) = \min_{x_1, \ldots, x_n \in [0,1]} g_G(x_1, \ldots, x_n)$$

$$\leq \min_{x \in [0,1]} \sum_{i \in V} \left(x \left(1 - x^{d_i} (1-x^{t_i}) \right) + (1-x)^{d_i+1} \left(1 - \frac{1}{1 + d_i} (1-x)^{t_i} \right) \right)$$

$$\leq \min_{x \in [0,1]} \left(x \left(1 - x^{\Delta} (1-x) \right) + (1-x)^{\Delta+1} \left(1 - \frac{1}{1 + \Delta} (1-x)^{\Delta(\Delta-1)} \right) \right)n.$$

Since DOMINATING SET is an NP-complete decision problem ([5]), it is difficult to solve the continuous optimization problem \mathcal{P}:

$$\min_{x_1, \ldots, x_n \in [0,1]} g_G(x_1, \ldots, x_n).$$

However, if (x_1, \ldots, x_n) is the solution of any approximation method for \mathcal{P}, then (see Theorem 2) we can easily find a dominating set of G of cardinality at most $g_G(x_1, \ldots, x_n)$.

Theorem 2. Given a graph \(G \in \Gamma \) on \(V = \{1, \ldots, n\} \) with maximum degree \(\Delta_1 \), \(x_1, \ldots, x_n \in [0, 1] \), there is an \(O(\Delta^4n) \)-algorithm finding a dominating set \(D \) of \(G \) with \(|D| \leq g_G(x_1, \ldots, x_n) \).

2. Proofs

Proof of Theorem 1. For events \(A \) and \(B \) and for a random variable \(Z \) of an arbitrary random space, \(P(A), P(A|B) \), and \(E(Z) \) denote the probability of \(A \), the conditional probability of \(A \) given \(B \), and the expectation of \(Z \), respectively. Let \(\bar{A} \) be the complementary event of \(A \). We will use the well-known facts that \(P(B)P(A|B) = P(A \cap B) = P(B) - P(\bar{A} \cap B) = P(B)(1 - P(\bar{A}|B)) \) and \(E(|S'|) = \sum_{s \in S} E(s \in S') \) for a random subset \(S' \) of a given finite set \(S \). \(I \subseteq V \) is an independent set if \(N(i) \cap I = \emptyset \) for all \(i \in I \).

Consider fixed \(x_1, \ldots, x_n \in [0, 1] \). \(X \subseteq V \) is formed by random and independent choice of \(i \in V \), where \(P(i \in X) = x_i \). Let \(X' = \{ i \in X \mid N(i) \subseteq X \} \), \(X'' = \{ i \in X' \mid N(i) \cap (X \setminus X') \neq \emptyset \} \). \(Y = \{ i \in V \mid i \notin X \land N(i) \cap X = \emptyset \} \), \(Y' = \{ i \in Y \mid N(i) \cap Y \neq \emptyset \} \), and \(I \) be a maximum independent set of the subgraph of \(G \) induced by \(Y' \).

Lemma 3. \((X \setminus X'') \cup (Y \setminus I)\) is a dominating set of \(G \).

Proof. Obviously, \(X'' \subseteq X' \subseteq X \) and \((X \setminus X') \subseteq (X \setminus X'') \). If \(i \in V \setminus (X \cup Y) \) then \(N(i) \cap (X \setminus X') \neq \emptyset \). If \(i \in X'' \) then again \(N(i) \cap (X \setminus X') \neq \emptyset \), and if \(i \in I \) then \(N(i) \cap (Y \setminus I) \neq \emptyset \).

Lemma 4. \(\gamma \leq E(|X|) - E(|X'')| + E(|Y|) - E(|I|) \).

Proof. Let \(\mathcal{D} \) be a random dominating set of \(G \). Because of the property of the expectation to be an average value we have \(\gamma \leq E(|D|) \). With Lemma 3 and linearity of the expectation, \(\gamma \leq E((|X \setminus X''| \cup |Y \setminus I|)) = E(|X| - |X''|) + E(|Y| - |I|) = E(|X|) - E(|X''|) + E(|Y|) - E(|I|) \) since \((X \setminus X'') \cap (Y \setminus I) = \emptyset \).

Lemma 5. \(E(|X|) = \sum_{i \in V} x_i, E(|X'') = \sum_{i \in V} x_i \left(\prod_{j \in N(i)} x_j \right) \left(1 - \prod_{k \in N_2(i)} x_k \right) \),

\[E(|Y|) = \sum_{i \in V} (1 - x_i) \prod_{j \in N(i)} (1 - x_j), \text{ and} \]

\[E(|I|) \geq \sum_{i \in V} \frac{1}{1 + d_i} (1 - x_i) \left(\prod_{j \in N(i)} (1 - x_j) \right) \left(\prod_{k \in N_2(i)} (1 - x_k) \right). \]
Proof. $E(|X|) = \sum_{i \in V} P(i \in X) = \sum_{i \in V} x_i$.

$E(|X'|) = \sum_{i \in V} P(i \in X') = \sum_{i \in V} P(i \in X \cap N(i) \subseteq X \cap N(i) \cap (X \setminus X') \neq \emptyset)$

$= \sum_{i \in V} P(i \in X) P(N(i) \subseteq X) P(N(i) \cap (X \setminus X') \neq \emptyset | i \in X \cap N(i) \subseteq X)$

$= \sum_{i \in V} x_i \left(\prod_{j \in N(i)} x_j \left(1 - P(N(i) \subseteq X' | i \in X \cap N(i) \subseteq X) \right) \right)$

$= \sum_{i \in V} \left(\sum_{i \in V} x_i \left(\prod_{j \in N(i)} x_j \right) \left(1 - P(N_2(i) \subseteq X) \right) \right)$

$= \sum_{i \in V} \left(1 - x_i \right) \left(\prod_{j \in N(i)} (1 - x_j) \right)$.

A lower bound on $|I|$ (see [1, 9, 2, 6]) is given by the following inequality $|I| \geq \sum_{i \in V} \frac{1}{1 + d_i}$. For $i \in V(G)$ define the random variable Z_i with $Z_i = \frac{1}{1 + d_i}$ if $i \in Y'$ and $Z_i = 0$ if $i \notin Y'$. Hence,

$$E(|I|) \geq E\left(\sum_{i \in V} Z_i \right) = \sum_{i \in V} E(Z_i) = \sum_{i \in V} \frac{1}{1 + d_i} P(i \in Y')$$

$$\geq \sum_{i \in V} \frac{1}{1 + d_i} P(i \notin X \cap N(i) \cap X = \emptyset \cap N(i) \cap Y \neq \emptyset).$$

Because $d_i \geq 1$, $N_2(i) \cap X = \emptyset$ implies $N(i) \cap Y \neq \emptyset$. Hence,

$$E(|I|) \geq \sum_{i \in V} \frac{1}{1 + d_i} P(i \notin X \cap N(i) \cap X = \emptyset \cap N_2(i) \cap X = \emptyset)$$

$$\geq \sum_{i \in V} \frac{1}{1 + d_i} P(i \notin X) P(N(i) \cap X = \emptyset) P(N_2(i) \cap X = \emptyset)$$

$$\geq \sum_{i \in V} \frac{1}{1 + d_i} \left(1 - x_i \right) \left(\prod_{j \in N(i)} (1 - x_j) \right) \left(\prod_{k \in N_2(i)} (1 - x_k) \right).$$
From Lemma 4 and Lemma 5 we have $\gamma \leq g_G(x_1, \ldots, x_n) \leq f_G(x_1, \ldots, x_n)$. Let D^* be a minimum dominating set of G and let $y_i = 1$ if $i \in D^*$ and $y_i = 0$ if $i \notin D^*$. Then $y_i \prod_{j \in N(i)} y_j = 0$ and $(1 - y_i) \prod_{j \in N(i)} (1 - y_j) = 0$ for every $i \in V$. $\gamma = |D^*| = \sum_{i \in V} y_i = g_G(y_1, \ldots, y_n) = f_G(y_1, \ldots, y_n)$, and the proof of Theorem 1 is complete.

Proof of Theorem 2. Given a graph H on n_H vertices with m_H edges, there is an $O(n_H + m_H)$-algorithm A finding an independent set of H with cardinality at least $\sum_{y \in V(H)} \frac{1}{1 + d_H(y)}$, where $d_H(y)$ is the degree of $y \in V(H)$ (see [2]).

First we present an algorithm that constructs a set $D \subseteq V$.

Algorithm

INPUT: a graph $G \in \Gamma$ on $V = \{1, \ldots, n\}$, $x_1, \ldots, x_n \in [0, 1]$

OUTPUT: D

(1) For $l = 1, \ldots, n$ do if $\frac{\partial g_G(x_1, \ldots, x_n)}{\partial x_l} \geq 0$ then $x_l := 0$ else $x_l := 1$.

(2) $X := \{l \in \{1, \ldots, n\} | x_l = 1\}$. Calculate X'', Y, Y', and I using A.

(3) $D := (X \setminus X'') \cup (Y' \setminus I)$.

END

Let $g^* = g_G(x_1, \ldots, x_n)$, where (x_1, \ldots, x_n) is the input vector. Note that the function g_G is linear in each variable. Thus, in step (1), for fixed $x_1, \ldots, x_{l-1}, x_{l+1}, \ldots, x_n$ we always choose x_l in such a way that the value of $g_G(x_1, \ldots, x_n)$ is not increased. Hence, $x_l \in \{0, 1\}$ for $l = 1, \ldots, n$ and $g_G(x_1, \ldots, x_n) \leq g^*$ after step (1) of the algorithm. With Lemma 3, D is a dominating set, and with $|S| = E(|S|)$ for a deterministic set S and Lemma 5, $|D| \leq g^*$. It is easy to see that $\frac{\partial g_G(x_1, \ldots, x_n)}{\partial x_l}$ can be calculated in $O(\Delta^4)$ time. Since G has $O(\Delta n)$ edges, the algorithm runs in $O(\Delta^4 n)$ time.

References

Received 23 September 2003
Revised 15 June 2004