A NOTE ON MINIMALLY 3-CONNECTED GRAPHS *

VíCTOR NEUMANN-LARA

Instituto de Matemáticas
Universidad Nacional Autónoma de México
Ciudad Universitaria, México D.F. 04510

EDUARDO RIVERA-CAMPO

Departamento de Matemáticas
Universidad Autónoma Metropolitana-Iztapalapa
Av. San Rafael Atlixco 186, México D.F. 09340

AND

JORGE URRUTIA

Instituto de Matemáticas
Universidad Nacional Autónoma de México
Ciudad Universitaria, México D.F. 04510

Abstract

If G is a minimally 3-connected graph and C is a double cover of the set of edges of G by irreducible walks, then $|E(G)| \geq 2|C| - 2$.

Keywords: minimally 3-connected, walk double cover.

2000 Mathematics Subject Classification: 05C70, 05C38.

*Partially supported by Conacyt, México.
1. Introduction

A walk α in a simple graph G is a sequence w_0, w_1, \ldots, w_s of vertices of G, not necessarily different, such that $w_{i-1}w_i$ is an edge of G for $i = 1, 2, \ldots, s$. An edge e of G is said to be traversed in a walk α if its vertices are consecutive in α; an edge may be traversed more than once in a given walk.

A walk α in a graph G is irreducible if $a \neq b$ for every pair a, b of edges which are traversed consecutively in α. A set C of irreducible closed walks in a graph G is a walk double cover of G if each edge of G is traversed exactly two times, either once in two different walks in C or twice in the same walk in C.

For any simple graph G and any edge $e = uv$ of G we denote by $G - e$ the graph obtained from G by deleting the edge e, and by $G \cdot e$ the simple graph obtained from G by identifying the vertices u and v and deleting loops and multiple edges. A minimally 3-connected graph is a 3-connected graph G such that, for every edge e of G, the graph $G - e$ is no longer 3-connected.

Whenever possible we follow the terms and notation given in [1]. A wheel W_t is a graph with $t + 1$ vertices, obtained from a cycle C_t with t vertices by adding a new vertex w adjacent to each vertex in C_t. The cycle C_t and the vertex w are called the rim and the hub of W_t, respectively. In this note we prove the following result.

Theorem 1.1. Let G be a minimally 3-connected graph with m edges. If C is a walk double cover of G with k walks, then $m \geq 2k - 2$. Moreover if $m \leq 2k - 1$, then G is a planar graph and C is the set of planar faces of G; in particular if $m = 2k - 2$, then G is a wheel.

2. Proof of Theorem 1.1

The following result due to R. Halin [2] will be used in the proof of Theorem 1.1.

Theorem 2.1. If $e = uv$ is an edge of a minimally 3-connected graph G with $\min\{d(u), d(v)\} \geq 4$, then e lies in no cycle of G of length 3 and $G \cdot e$ is also minimally 3-connected.

For any graph G and any walk double cover C of G, we denote by $m(G)$ and by $k(C)$ the number of edges of G and the number of walks in C, respectively.
Remark 1. Let G be a 3-connected graph and C be a walk double cover of G. If two edges uw and wv are consecutive edges in two walks in C, then the degree of w is at least 4.

Proof of Theorem 1.1. The smallest 3-connected graph is the wheel W_3 which is planar and has 6 edges. Since each irreducible walk has at least 3 edges, no walk double cover of W_3 has more than 4 walks. Moreover, the only walk double cover of W_3 with 4 walks consists of the planar faces of W_3.

We proceed by induction assuming $m \geq 7$ and that the result holds for every minimally 3-connected graph with less than m edges.

If G has an edge $e = uv$ with $\min\{d(u), d(v)\} \geq 4$, then by Halin’s theorem, $G \cdot e$ is also minimally 3-connected. Let $C \cdot e$ denote the set of k walks of $G \cdot e$ obtained from the walks in C by contracting the edge e.

Also by Halin’s theorem, the edge e lies in no cycle of G of length 3; this implies that all walks in $C \cdot e$ are irreducible. Because C is a walk double cover of G and e is not an edge of $G \cdot e$, $C \cdot e$ is a walk double cover of $G \cdot e$. By induction, $m(G \cdot e) \geq 2k(C \cdot e) - 2$; therefore $m \geq 2k - 1$, since $m(G \cdot e) = m - 1$ and $k(C \cdot e) = k$.

If $m = 2k - 1$, then $m(G \cdot e) = 2k(C \cdot e) - 2$; by induction $G \cdot e$ is a wheel W_t and $C \cdot e$ is the set of planar faces of W_t. Let x be the vertex of W_t obtained by identifying u and v. Since u and v have degree at least 4 in G, the vertex x must be the hub of W_t; let $w_0, w_1, \ldots, w_{t-1}$ be the rim of W_t.

Since e is in no cycle of G of length 3, G is a graph consisting of the cycle $w_0, w_1, \ldots, w_{t-1}$, the two adjacent vertices u and v, and one edge joining each vertex w_i to either u or v.

Suppose there are distinct integers a, b and c such that w_a, w_{a+1} and w_c are adjacent to u in G and w_{a+1}, w_b and w_{c+1} are adjacent to v in G. The walks $w_a, x, w_{a+1}, w_b, x, w_{b+1}$ and w_c, x, w_{c+1} lie in C, since they are faces of $G \cdot e$. This implies that $w_a, u, w_{a+1}, w_b, v, u, w_{b+1}$ and w_c, u, v, w_{c+1} are walks in C which is not possible, since the edge $e = uv$ cannot lie in three walks in C.

Therefore there are integers i and j such that $w_i, w_{i+1}, \ldots, w_{j-1}$ are adjacent to u in G and $w_j, w_{j+1}, \ldots, w_{i-1}$ are adjacent to v in G. This shows that G is a planar graph.

Since $C \cdot e$ is the set of faces of $G \cdot e = W_t$ and each walk in $C \cdot e$ is either a walk in C or is obtained from a walk in C by contracting the edge e, the set C must be the set of faces of G.

We can now assume that each edge of G has at least one end with degree 3. If C contains no cycle of length 3, then $2m \geq 4k$ and $m \geq 2k$. Therefore we can also assume that C contains at least one cycle of length 3. Let C_3 be the set of cycles in C of length 3; two cases are considered.

Case 1. There is a cycle α in C_3 such that no pair of edges of α are traversed consecutively in any other walk in C.

Let u, v and w be the vertices of α. Since each edge of G has an end with degree 3, without loss of generality, we can assume $d_G(u) = d_G(v) = 3$. Let u_1 and v_1 denote the third vertex of G adjacent to u and the third vertex of G adjacent to v, respectively; notice that $u_1 \neq v_1$, since G is 3-connected and has at least 5 vertices.

Subcase 1.1. If $d_G(w) = 3$, let w_1 denote the third vertex of G adjacent to w; as above $u_1 \neq w_1 \neq v_1$. Let G' be the graph obtained from G by contracting the cycle α to a single point x. We claim that G' can also be obtained from G by a *delta to wye* transformation (see Figure 1), and therefore it is also a 3-connected graph.

![Figure 1](image.png)

Since $d_G'(x) = 3$ and $d_G'(z) = d_G(z)$ for each vertex $z \neq x$ of G', every edge of G' has an end with degree 3; therefore G' is minimally 3-connected.

Let C' be the set of $k - 1$ walks of G' obtained from the walks in $C \setminus \{\alpha\}$ by contracting the edges uv, vw and wu. Since no pair of edges of α are consecutive edges in any walk in $C \setminus \{\alpha\}$, all walks in C' are irreducible. Moreover, C' is a walk double cover of G', since C is a walk double cover of G and uv, vw and wu are not edges of G'.

By induction $m(G') \geq 2k(C') - 2$; hence $m \geq 2k - 1$, since $m(G') = m - 3$ and $k(C') = k - 1$. If $m = 2k - 1$, then $m(G') = 2k(C') - 2$. Again by
induction $G \cdot e$ is a wheel W_t and C' is the set of planar faces of W_t. Since x has degree 3 in G', we can assume without loss of generality that x lies in the rim of $G' = W_t$ and that w_1 is the hub; this implies that G is a graph as in Figure 2 and therefore it is a planar graph in which α is a face.

Since C' is the set of faces of G' and every walk in C' is either a walk in $C \setminus \{\alpha\}$ or is obtained from a walk in $C \setminus \{\alpha\}$ by contracting some of the edges uv, vw and wu, the set C must be the set of planar faces of G.

Subcase 1.2. If $d_G(w) \geq 4$, we consider the graph $G \cdot uv$. We claim that u and v cannot be contained in a 3-vertex cut of G and, therefore, $G \cdot uv$ is 3-connected.

Since $d_{G \cdot uv}(x) = 3$ and $d_{G \cdot uv}(z) \leq d_G(z)$ for each vertex $z \neq x$ of $G \cdot uv$, every edge of $G \cdot uv$ has an end with degree 3; therefore $G \cdot uv$ is minimally 3-connected.

Let $C \cdot uv$ be the set of $k-1$ walks of $G \cdot uv$ obtained from the walks in $C \setminus \{\alpha\}$ by contracting the edge uv to a vertex x and substituting each of the edges uw and vw by the edge xw. Each walk in $C \cdot uv$ is irreducible, because no pair of edges of α are traversed consecutively in any other walk in C. Since C is a walk double cover of G and uv is not an edge of $G \cdot uv$, the set $C \cdot uv$ is a walk double cover of $G \cdot uv$.

By induction $m(G \cdot w) \geq 2k(C \cdot w) - 2$; hence $m \geq 2k - 2$, since $m(G \cdot w) = m - 2$ and $k(C \cdot uv) = k - 1$. If $m \leq 2k - 1$, then $m(G \cdot uv) \leq 2k(C \cdot uv) - 1$; again by induction, $G \cdot uv$ is a planar graph and $C \cdot uv$ is the set of planar faces of $G \cdot uv$.

Since $G \cdot uv$ is 3-connected, there is a planar drawing $\overline{G \cdot uv}$ of $G \cdot uv$ in which x is an interior vertex. Let R be the region formed by the three faces of $\overline{G \cdot uv}$ in which x is a vertex. Since w, u_1 and v_1 lie in the boundary of R
and x is in the interior of R, a planar drawing \overline{G} of G can be obtained from $G \cdot uv$ by replacing (within the interior of R) the vertex x with two adjacent vertices u and v, and the edges wx, u_1x and v_1x with the edges wu, vw, u_1u and v_1v as in Figure 3.

![Figure 3](image1)

Therefore G is a planar graph and α is a face of G. Furthermore, C is the set of faces of G, since $C \cdot uv$ is the set of planar faces of $G \cdot uv$ and each walk in $C \cdot uv$ is either a walk in $C \setminus \{\alpha\}$ or is obtained from a walk in $C \setminus \{\alpha\}$ by contracting the edge uv to the vertex x and substituting each of the edges uw and vw by the edge xw.

If $m = 2k - 2$, then $m(G \cdot uv) = 2k(C \cdot uv) - 2$; again by induction, $G \cdot uv$ is a wheel W_t. Since $d_{G \cdot uv}(x) = 3$, we can assume that x lies in the rim of $G \cdot uv$.

If w is the hub of $G \cdot uv$, then G is the wheel W_{t+1}, also with hub w. If u_1 is the hub of $G \cdot uv$, then G is a graph as in Figure 4. Notice that if $t > 3$, then $G - u_1w$ is 3-connected which is not possible since G is minimally 3-connected. Therefore $t = 3$ and G is the wheel W_4 with hub w. Analogously, if v_1 is the hub of $G \cdot uv$, then G is the wheel W_4.

![Figure 4](image2)
Case 2. For every cycle $\alpha \in C_3$ there is walk $\sigma_\alpha \neq \alpha$ in C such that two edges of α are traversed consecutively in σ_α.

For this case, we shall prove that the average length of the walks in C is at least 4 and therefore $2m \geq 4k$ and $m \geq 2k$.

For each $\alpha \in C_3$ let u_α, w_α and v_α denote the vertices of α. Without loss of generality we assume that $u_\alpha w_\alpha$ and $w_\alpha v_\alpha$ are traversed consecutively in σ_α. Notice that the walk σ_α is uniquely determined since C is a walk double cover of G.

By Remark 1, $d_G(w_\alpha) \geq 4$; therefore $d_G(u_\alpha) = d_G(v_\alpha) = 3$, since every edge of G has an end with degree 3. Let u'_α and v'_α denote the third vertex of G adjacent to u_α and the third vertex of G adjacent to v_α, respectively.

Again by Remark 1, the edges $w_\alpha u_\alpha$ and $u_\alpha v_\alpha$ are not traversed consecutively in σ_α; therefore σ_α must traverse the edge $u_\alpha u'_\alpha$; analogously σ_α traverses the edge $v_\alpha v'_\alpha$. If $u'_\alpha = v'_\alpha$, then u_α and v_α are adjacent only to u'_α, to w_α and to each other which is not possible since G is a 3-connected graph with at least 5 vertices; therefore σ_α has length at least 5 for each $\alpha \in C_3$. For each $\tau \in C$ let $l(\tau)$ denote the length of τ.

Consider the equivalence relation in C_3 given by $\beta \sim \gamma$ if and only if $\sigma_\beta = \sigma_\gamma$. For $\alpha \in C_3$ let $[\alpha]$ denote the equivalence class of α.

Let β and γ be two distinct cycles in $[\alpha]$ and assume, without loss of generality, that the edges $u_\beta w_\beta$, $w_\beta v_\beta$, $u_\gamma w_\gamma$ and $w_\gamma v_\gamma$ are traversed in $\sigma_\alpha = \sigma_\beta = \sigma_\gamma$ in that relative order. The edges $u_\beta w_\beta$ and $w_\beta v_\beta$ are not edges of γ since they are traversed in β and in $\sigma_\beta \neq \beta$; analogously $u_\gamma w_\gamma$ and $w_\gamma v_\gamma$ are not edges of β.

Suppose that $w_\beta v_\beta$ and $u_\gamma w_\gamma$ are traversed consecutively in σ_α. Then $v_\beta = u_\gamma$ and $w_\beta \neq w_\gamma$, since σ_α is an irreducible walk. Moreover, $u_\beta = v_\gamma$ since $d_G(v_\beta = w_\gamma) = 3$ and w_β, w_γ, u_β and v_γ are all adjacent to $v_\beta = u_\gamma$. This implies that the vertices $v_\beta = u_\gamma$ and $u_\beta = v_\gamma$ are adjacent in G only to w_β, to w_γ, and to each other which is not possible since G is 3-connected and has at least 5 vertices.

Therefore, no edges of two distinct cycles in $[\alpha]$ are traversed consecutively in σ_α. This implies that σ_α has at least $3|\alpha|$ edges.

By the above arguments

$$\frac{l(\sigma_\alpha) + l(\alpha)}{2} \geq \frac{5 + 3}{2} = 4$$
for each \(\alpha \in C_3 \) with \(||\alpha|| = 1 \), and

\[
\frac{l(\sigma_\alpha) + \sum_{\beta \in [\alpha]} l(\beta)}{||\alpha|| + 1} \geq \frac{3 ||\alpha|| + 3 ||\alpha||}{||\alpha|| + 1} = \frac{6 ||\alpha||}{||\alpha|| + 1} \geq 4
\]

for each \(\alpha \in C_3 \) with \(||\alpha|| \geq 2 \).

Since all walks in \(C \) which are not in \(C_3 \) have length at least 4, the average length in \(C \) must also be at least 4.

Corollary 2.2. Let \(G \) be a minimally 3-connected graph with \(n \) vertices. If \(C \) is a walk double cover of \(G \) with \(k \) walks, then \(k \leq \frac{3n-4}{2} \).

Proof. Let \(m \) denote the number of edges in \(G \). W. Mader proved in [3] that \(m \leq 3n - 6 \); by Theorem 1.1, \(k \leq \frac{m+2}{2} \leq \frac{(3n-6)+2}{2} = \frac{3n-4}{2} \).

Corollary 2.3. If \(G \) is a minimally 3-connected planar graph with \(n \) vertices, then \(G \) has at most \(n \) faces. Moreover if \(G \) has exactly \(n \) faces, then \(G \) is a wheel.

Proof. Since \(G \) is 3-connected, its set of faces is a walk double cover. By Theorem 1.1, \(m \geq 2r - 2 \), where \(m \) and \(r \) are the number of edges and faces of \(G \), respectively. Since \(n - m + r = 2 \), it follows \(r \leq n \).

Also by Theorem 1.1, if \(G \) is not a wheel, then \(m \geq 2r - 1 \), in which case \(r \leq n - 1 \).

Corollary 2.4. If \(G \) is a minimally 3-connected graph with \(n \) vertices embedded in a closed surface \(S \) with Euler characteristic \(\chi \neq 2 \), then \(G \) has at most \(n - \chi \) faces.

Proof. As in Corollary 2.3, the set of faces of \(G \) is a walk double cover of \(G \). Since \(S \) is not the sphere, \(C \) is not the set of planar faces of \(G \). By Theorem 1.1, \(m \geq 2r \), where \(m \) and \(r \) are the number of edges and faces of \(G \), respectively. Since \(\chi = n - m + r \), it follows \(r \leq n - \chi \).

References

A Note on Minimally 3-Connected Graphs

Received 26 February 2002
Revised 13 November 2002