CLIQUE PARTS INDEPENDENT OF REMAINDERS

ZDZISLAW SKUPIEŃ

Faculty of Applied Mathematics
University of Mining and Metallurgy AGH
al. Mickiewicza 30, 30–059 Kraków, Poland
e-mail: skupien@uci.agh.edu.pl

Let \(p \) and \(t \) stand for positive integers. Let \(R \) denote an edge subset of size \(|R| = (\binom{p}{2}) \mod t \) in the complete graph \(K_p \). Call \(R \) a remainder (or an edge \(t \)-remainder) in the clique \(K_p \).

Conjecture L (L reminds of floor symbol). The floor class \(\lfloor K_p/t \rfloor \) is nonempty. In other words, there exists a graph \(F \) such that, for each edge \(t \)-remainder \(R \) in \(K_p \), \(F \) is a \(t \)th part of \(K_p - R \), i.e., \(F \in \lfloor K_p/t \rfloor \).

Conjecture L implies the following conjecture stated in [2].

**Conjecture L*. For each edge \(t \)-remainder \(R \) in \(K_p \), there is an \(F_R \in (K_p - R)/t =: \lfloor K_p/t \rfloor_R \).

Theorem L' (Skupień [2]). There exists an edge \(t \)-remainder \(R \) in \(K_p \) such that the floor class \(\lfloor K_p/t \rfloor_R \) is nonempty.

Plantholt’s theorem [1] on chromatic index is equivalent to the truth of Conjecture L with \(t = p - 1 \) and \(p \) being odd.

Conjecture L can be seen true for many pairs \(p, t \), e.g., if \(t \geq p - 1 \) or \(t \) is small: \(t \leq 5 \). If \(t \) is a constant \((t \geq 4) \), both Conjectures can be reduced to some values of \(p \) in the interval \(t + 2 \leq p \leq 4t - 5 \).

References
