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Abstract

The class of DCT-graphs is a common generalization of the classes
of almost claw-free and quasi claw-free graphs. We prove that every
even (2p + 1)-connected DCT-graph G is p-extendable, i.e., every set
of p independent edges of G is contained in a perfect matching of G.
This result is obtained as a corollary of a stronger result concerning
factor-criticality of DCT-graphs.
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1. Introduction

In this paper we consider only finite undirected graphs G = (V (G), E(G))
without loops and multiple edges. For any set A ⊂ V (G), 〈A〉 denotes the
subgraph of G induced on A, G−A stands for 〈V (G)−A〉 and c(G−A) (or
co(G−A)) denotes the number of components (odd components) of G−A,
respectively (we say that a graph is odd or even if it has an odd or even
number of vertices). A set A ⊂ V (G) such that c(G − A) > 1 will be called
a cutset. If A,B ⊂ V (G), then we denote NA(B) = {x ∈ A|xy ∈ E(G) for
some y ∈ B}. If x ∈ V (G), then we simply denote N(x) = NV (G)({x}) and
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we put N [x] = N(x) ∪ {x}. If H is a graph, then we say that G is H-free

if G does not contain an induced subgraph isomorphic to H. If H ⊂ G is
an induced subgraph of G isomorphic to the star K1,r (r ≥ 3), then the
only vertex of degree r in H is called the center of H and the vertices of
degree 1 in H are called the toes of H. In the special case r = 3 we say
that H is a claw. Whenever vertices of a claw (or of an induced K1,r) are
listed, the center is always the first vertex of the list. For other notation
and terminology not defined here we refer e.g. to [3].

Claw-free graphs have been intensively studied during the last decade.
Sumner [11] and independently Las Vergnas [5] proved that every even con-
nected claw-free graph has a perfect matching. In accordance with Tutte’s
1-factor theorem, we call a set S such that co(G − S) > |S| an antifactor

set. Sumner [12] proved the following theorem.

Theorem 1.1 [12]. Let G be an even connected graph having no perfect

matching and let S ⊂ V (G) be a minimum antifactor set in G. Then every

vertex of S is adjacent to vertices of at least three components of G − S.

The following extension of the class of claw-free graphs was introduced in [9].
A graph G is almost claw-free if the set of claw centers is independent and, for
every claw center x ∈ V (G), 〈N(x)〉 is 2-dominated (i.e. there are vertices
d1, d2 ∈ N(x) such that yd1 ∈ E(G) or yd2 ∈ E(G) for every y ∈ N(x)).
We denote the class of almost claw-free graphs by ACF . It was shown in [9]
that every even connected graph G ∈ ACF has a perfect matching.

Another extension of the class of claw-free graphs was introduced in [1].
For two nonadjacent vertices a and b of G, let J(a, b) = {y ∈ N(a) ∩
N(b)|N [y] ⊂ N [a] ∪ N [b]} (thus, in particular, J(a, b) = ∅ if a and b are
at distance more than 2). The vertices of J(a, b) are called the dominators

of the pair {a, b}. A graph G is quasi claw-free (denoted G ∈ QCF) if
J(a, b) 6= ∅ for every pair of vertices a, b at distance 2. It was shown in [1]
that

(i) every claw-free graph is quasi claw-free,

(ii) both ACF \ QCF and QCF \ ACF are infinite and

(iii) every even connected graph G ∈ QCF has a perfect matching.

It is not difficult to observe that also the class (ACF ∩QCF)\CF is infinite.
A simple example of a graph G ∈ (ACF ∩ QCF) \ CF is in Figure 1(a)
(centers of claws are indicated by double circles).

The class of DCT-graphs, containing all almost claw-free graphs and all
quasi claw-free graphs, was first introduced in [2] in the following way.
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A claw 〈{z, a1, a2, a3}〉 is said to be dominated (or undominated) if J(a1, a2)∪
J(a2, a3) ∪ J(a3, a1) 6= ∅ (or = ∅), respectively. The vertices of J(a1, a2) ∪
J(a2, a3) ∪ J(a3, a1) are called the dominators of the claw. We say that
a graph G is a graph with dominated claw toes, or, briefly, a DCT-graph

(denoted G ∈ DCT ) [2] if every claw in G is dominated. Clearly, QCF ⊂
DCT . It is easy to see that also ACF ⊂ DCT . Indeed, let 〈{z, a1, a2, a3}〉
be a claw of an almost claw-free graph G and, without loss of generality, y
a neighbor of z adjacent to a1 and a2. Since it is adjacent to z, y does not
center a claw and thus N(y) ⊂ N [a1] ∪ N [a2]. Therefore, J(a1, a2) 6= ∅ and
G ∈ DCT . It is easy to see that the class DCT \ (ACF ∪QCF) is infinite. A
simple example of a graph G ∈ DCT \(ACF∪QCF) is shown in Figure 1(b).
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Figure 1

It was proved in [2] that every even connected DCT-graph has a perfect
matching.

A graph G of even order n is p-extendable [6] if every set of p independent
edges is contained in a perfect matching of G. The concept of extendability
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has been studied in many classes of graphs. In particular, it is known that
every (2p + 1)-connected claw-free graph [7] or almost claw-free graph [10]
is p-extendable. A survey on this topic can be found in [8].

In the present paper we generalize these results to the class DCT . The
main idea of our proof consists in deleting any p independent edges from
G and in showing that the resulting graph has a perfect matching. But
actually, when we delete the 2p end-vertices of the prescribed edges, we no
longer need the information that those vertices induced themselves a graph
with a perfect matching. Thus the deletion of any 2p vertices leads to the
same conclusion. Hence, what we get in our proof is much stronger than
the p-extendability and is related to the concept of k-factor-criticality. This
property has been defined [4] by an analogy with the concept of factor-
critical and bicritical graphs. We say that G is k-factor-critical if for every
set X of k vertices of G, G−X induces a graph with a perfect matching (or,
equivalently, every induced subgraph of order n−k has a perfect matching).
With the convention that a graph of order 0 has a perfect matching, it is
easy to see that

(i) every graph of order n is n-factor-critical,

(ii) a graph of order n can be k-factor-critical only if k and n are of the
same parity,

(iii) any k-factor-critical graph of order n (2 ≤ k < n) is (k − 2)-factor-
critical,

(iv) a graph G is 0-factor-critical if and only if G has a perfect matching.

Any 2p-factor-critical graph is clearly p-extendable.

2. Main Result

We first prove the following lemma.

Lemma 2.1. Let G be a graph and H = 〈{z, x1, x2, . . . , xr}〉 an induced

subgraph of G isomorphic to K1,r for some r ≥ 3. If every subclaw of H is

dominated in G, then the set J =
⋃

1≤i<j≤r J(xi, xj) of the dominators of

all the pairs {xi, xj} satisfies |J | ≥ r(r−2)
4 .

P roof. By the definition of J(a, b), a dominator of a pair {xi, xj} cannot
be adjacent to a third vertex xh (h /∈ {i, j}) and thus no two different pairs
of toes of H can have a common dominator. We construct a graph H ′ with
vertex set V (H ′) = {x1, x2, . . . , xr} and edge set E(H ′) = {xixj | J(xi, xj) 6=
∅, 1 ≤ i < j ≤ r}. Hence H ′ has at most |J | edges. Since each subclaw of
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H = 〈{z, x1, x2, . . . , xr}〉 is dominated, the complement of H ′ is triangle-
free. By Turán’s theorem (see e.g. [3], Chapter 7.3), the maximum number

of edges in a triangle-free graph on r vertices is at most r2

4 , from which

|J | ≥ (r2) −
r2

4 = r
2 (2r−2−r

2 ) = r(r−2)
4 .

Now we can state the main result of this paper.

Theorem 2.2. Let G be a k-connected DCT-graph of order n. Then:

(i) if n − k is odd and k ≥ 1, then G is (k − 1)-factor-critical,

(ii) if n − k is even and k ≥ 2, then G is (k − 2)-factor-critical.

P roof. We first observe that the second statement of the theorem is an
immediate consequence of the first one. Indeed, if G is k-connected with
n − k even and k ≥ 2, then, setting k′ = k − 1, we get that G is also
k′-connected with n − k′ odd and thus, by (i), G is (k′ − 1)-factor-critical.
Hence it is sufficient to prove (i).

Suppose the statement (i) fails and let X be a set of k− 1 vertices of G
such that n − k is odd and the even subgraph G′ = G − X has no perfect
matching. Let S ⊂ V (G′) be a minimum antifactor set in G′ and put s = |S|
(note that, because G is k-connected, s ≥ 1.) Denote by C1, . . . , Cc (c ≥ 3)
the components of G′−S. Then, by parity, c ≥ s+2. By Theorem 1.1, each
vertex z of S is adjacent to at least three different components of G′ − S
and thus centers a claw 〈{z, ai1 , ai2 , ai3}〉, where aij ∈ V (Cij ), j = 1, 2, 3.
Any dominator of this claw, say y ∈ J(ai1 , ai2), is adjacent to ai1 and ai2,
but has no neighbor in any other Cℓ, ℓ /∈ {i1, i2}. Thus y /∈

⋃c
i=1 V (Ci) ∪ S

and hence y ∈ X.

Let Ĝ be the graph obtained from G′ by contracting every compo-
nent Ci to a vertex ci and by deleting possible multiple edges. We denote
C = {c1, c2, . . . , cc}. For every subset A ⊂ X ∪ S and for any i = 1, . . . , c
denote e(ci, A) = |{cix ∈ E(Ĝ) | x ∈ A}| and put e(C,A) =

∑c
i=1 e(ci, A).

(Equivalently, e(ci, A) equals the number of vertices of attachment of the
component Ci in A). From above, each claw 〈{z, ci1 , ci2 , ci3}〉 of Ĝ centered
at a vertex z of S is dominated by vertices of X and each dominator y
of the claw has exactly two neighbors in C. Let J ⊂ X be the set of all
the dominators of all the claws of Ĝ centered in S and with toes in C and
put j = |J |.

Since G is k-connected and C is independent, e(C,S ∪ X) ≥ ck. On
the other hand, e(C,S) ≤ sr, where r is the largest integer (r ≥ 3)
such that there exist vertices z in S and ci1 , ci2 , . . . , cir in C for which
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〈{z, ci1 , ci2 , . . . , cir}〉 is isomorphic to K1,r. Since every vertex in J is adja-
cent to only two vertices of C, we have

e(C,X) ≤ 2j + c(|X| − j) = 2j + c(k − 1 − j).

This yields

ck ≤ e(C,S ∪ X) = e(C,S) + e(C,X) ≤ sr + 2j + c(k − 1 − j),

from which c(j + 1) ≤ sr + 2j and thus, since c ≥ s + 2,

sj + s + 2 ≤ sr.

Hence j ≤ r − 1 − 2
s

and thus, by the integrity of j, j ≤ r − 2. Lemma 2.1
then implies

r(r − 2)

4
≤ j ≤ r − 2.

From this we get that either r = 4 and j = 2, or r = 3 and j = 1 (note that
j > 0 implies that r 6= 2). From sj + s + 2 ≤ sr we then get that in both
these cases s ≥ 2. We consider these two cases separately.

Case 1: j = 1, r = 3, s ≥ 2, c ≥ s + 2.

Let J = {y} and assume without loss of generality that NC(y) = {c1, c2}.
Each claw 〈{z, ci1 , ci2 , ci3}〉 centered in S is dominated by y and thus every
vertex z ∈ S is adjacent to both c1 and c2 and, since r = 3, to exactly one
vertex ci ∈ C \ {c1, c2}. On the other hand, since G is k-connected, every ci

has at least one neighbor in S. Since |C \ {c1, c2}| ≥ |S|, this implies that
|NS(ci)| = 1 for every i, 3 ≤ i ≤ c. Let NS(c3) = {z}. Then (X \ {y}) ∪ {z}
is a cutset of G having |X| = k − 1 elements, a contradiction.

Case 2: j = 2, r = 4, s ≥ 2, c ≥ s + 2.
Since r = 4, we have |NC(J)| = 4, for otherwise we have an induced K1,4

containing an undominated claw. We can assume without loss of general-
ity that J = {y1, y2} and that NC(y1) = {c1, c2}, NC(y2) = {c3, c4} and
NC(z) = {c1, c2, c3, c4} with z ∈ S. Then y1y2 /∈ E(G) (since otherwise
y2 ∈ N [y1] \ (N [c1] ∪ N [c2]), contradicting the fact that y1 ∈ J(c1, c2)), and
every claw centered in S and with toes in C has {c1, c2} or {c3, c4} as a pair
of toes.

Suppose first that c ≥ 5 and put C ′ = {c5, . . . , cc}. Every vertex of
S has at most one neighbor in C ′ for otherwise this vertex would center
an undominated claw. On the other hand, if there is a ci ∈ C ′ such that
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|NS(ci)| ≤ 2, then (X \ {y1, y2}) ∪ NS(ci) is a cutset of G having at most
|X| = k − 1 elements. Hence |NS(ci)| ≥ 3 for every ci ∈ C ′. This implies
3(c− 4) ≤ e(C ′, S \ {z}) ≤ s− 1, from which, using s ≤ c− 2, we get c ≤ 9

2 ,
a contradiction of the assumption c ≥ 5.

Therefore it remains to consider the case j = 2, r = 4, s = 2, c = 4.
But then the set (X\{y1, y2})∪S is a cutset of G separating 〈{c1, y1, c2}〉 and
〈{c3, y2, c4}〉 and having |X| = k−1 elements. This contradiction completes
the proof.

Corollary 2.3. Every even (2p + 1)-connected DCT-graph is p-extendable.

Remark. It was also proved in [10] that if G is a (2p+1)-connected K1,p+3-
free graph such that the set of all claw centers is independent, then G is
p-extendable. It can be easily seen that this result and our Corollary 2.3
are independent since the claw centers in a DCT-graph are not necessarily
independent and, on the other hand, the claws in a K1,p+3-free graph with
independent claw centers are not necessarily dominated.
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[10] Z. Ryjáček, Matching extension in K1,r-free graphs with independent claw

centers, Discrete Math. 164 (1997) 257–263.



278 O. Favaron, E. Flandrin and Z. Ryjáček
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