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INCIDENCE COLORING—COLD CASES
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Abstract

An incidence in a graph G is a pair (v, e) where v is a vertex of G and e

is an edge of G incident to v. Two incidences (v, e) and (u, f) are adjacent
if at least one of the following holds: (i) v = u, (ii) e = f , or (iii) edge vu is
from the set {e, f}. An incidence coloring of G is a coloring of its incidences
assigning distinct colors to adjacent incidences. The minimum number of
colors needed for incidence coloring of a graph is called the incidence chro-

matic number.
It was proved that at most ∆(G) + 5 colors are enough for an incidence

coloring of any planar graph G except for ∆(G) = 6, in which case at most
12 colors are needed. It is also known that every planar graph G with girth
at least 6 and ∆(G) ≥ 5 has incidence chromatic number at most ∆(G)+ 2.

In this paper we present some results on graphs regarding their maximum
degree and maximum average degree. We improve the bound for planar
graphs with ∆(G) = 6. We show that the incidence chromatic number is at
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most ∆(G) + 2 for any graph G with mad(G) < 3 and ∆(G) = 4, and for
any graph with mad(G) < 10

3
and ∆(G) ≥ 8.

Keywords: incidence coloring, incidence chromatic number, planar graph,
maximum average degree.

2010 Mathematics Subject Classification: 05C15.



References
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